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Abstract—A content delivery network (CDN) improves the
accessing performance and availability of websites via its globally
distributed network infrastructures, which contributes to the
thriving of CDN-powered websites on the Internet. Because CDN-
powered websites normally operate important businesses or criti-
cal services, attackers are mostly interested in taking down these
high-value websites, to achieve severe damage with maximum
influence. Because the CDN absorbs distributed attacking traffic
with its massive bandwidth resources, it is commonly believed
that CDN vendors provide effective DoS protection for the CDN-
powered websites.

However, we reveal that implementation or protocol weak-
nesses in the forwarding mechanisms of the CDN can be exploited
to break this CDN protection. By sending crafted but legal
requests, an attacker can launch an efficient DoS attack against
the website origin behind it. In particular, we present three
CDN threats in this study. By abusing the HTTP/2 request-
converting behavior and HTTP pre-POST behavior of a CDN,
an attacker can saturate the CDN–origin bandwidth and exhaust
the connection limits of the origin. What is more concerning is
that some CDN vendors use only a small set of traffic forwarding
IPs with lower IP-churning rates to establish connections with
the origin. This characteristic provides a great opportunity for an
attacker to effectively degrade the global availability of a website
just by cutting off specific CDN–origin connections.

In this work, we examine the CDN request-forwarding behav-
iors across six well-known CDN vendors and perform real-world
experiments to evaluate the severity of the threats. Because the
threats are caused by flawed trade-offs made by the CDN vendors
between usability and security, we discuss possible mitigation
and received positive feedback after responsible disclosure to the
aforementioned CDN vendors.

I. INTRODUCTION

Through the deployment of massive surrogate servers in
different geographical locations, often across multiple Internet
backbones, a content delivery network (CDN) works as a
geographically distributed network, supporting websites into
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having high capacities in terms of both computational re-
sources and network bandwidth. Because of its traffic offload-
ing benefits and global accessibility, the CDN has become an
indispensable part of the Internet ecosystem. CDN vendors
have also been advertising their capability to protect against
DoS attacks, contributing to the successful expansion of CDNs
over the Internet, where increasingly more websites are being
deployed behind CDNs. For example, more than 50% of the
Alexa 1K and more than 35% of the Alexa 10K websites are
deployed behind CDNs [20].

However, in this paper, by empirically exploring the for-
warding behaviors of six CDNs, we reveal that the CDN
itself can be abused to attack the origin (website server)
behind a CDN. By sending crafted but legal requests to a
CDN, an attacker can initiate a DoS attack against the origin,
breaking the CDN DoS protection. In short, our work reveals
the following three threats:

• HTTP/2 Bandwidth Amplification Attack. We find that
CDNs support only HTTP/2 in the client–CDN connection,
and thus an attacker can abuse the HTTP/2–HTTP/1.1
converting behavior of a CDN to launch a bandwidth
amplification attack against the origin (e.g., reaching an
amplification factor of 132 for Cloudflare). We analyze
the HTTP/2-introduced HPACK compression mechanism,
which contributes to the threat, and also reveal that the
concurrent streams and Huffman encoding of HTTP/2 can
be abused to further elevate the bandwidth amplification
factor.
• Pre-POST Slow HTTP Attack. We find that three out of the

six CDNs we analyze in this study start forwarding HTTP
POST requests just upon receiving the POST header, without
waiting for the whole POST message body. This pre-POST
behavior can be abused to exhaust the connection limit of the
origin and starve other legitimate user requests, resulting in
a slow HTTP DoS attack against the origin. Even worse, the
HTTP/1.1 POST forwarding and HTTP/2 POST forwarding
behaviors of these CDNs are both susceptible to this threat.
• Degradation-of-Global-Availability Attack. By sending

requests to the global surrogate IPs (ingress IPs) of each
CDN to simulate global client accessing, we perform a
large-scale measurement of the distribution of the traffic-
forwarding IPs (egress IPs) of each CDN. Results show that
CDNs will assign a small set of egress IPs to access the
origin, presenting a lower IP-churning rate. Therefore, this

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24411
www.ndss-symposium.org



characteristic can be leveraged by an attacker to efficiently
degrade the availability of a CDN-powered website just by
cutting off one or a small set of CDN–origin connections,
thus preventing most global clients from accessing the
services of the website. For example, with MaxCDN (which
has now been acquired by StackPath [53]), if just one
CDN–origin connection is cut off, more than 90% of global
accesses are stopped from fetching resources from the origin
behind the CDN.

In summary, we focus on how to break CDN security
protection, which is assumed to be trustworthy by many
websites. By performing empirical security analysis on the
under-studied CDN back-to-origin connections, we explore
the feasibility of abusing the forwarding behaviors of a CDN
to launch DoS attacks against CDN-powered websites. The
HTTP/2 amplification attack is built on a previous study [7],
but whether it applies to CDN-protected websites has been un-
explored, and thus we further present a real-world evaluation of
the HTTP/2 amplification attack through CDN platforms, with
an in-depth analysis on the HPACK mechanism. Furthermore,
we find vulnerable HTTP POST-forwarding strategies of CDN
vendors, which can be exploited to launch pre-POST slow
HTTP attacks. Lastly, based on our large-scale measurements
of CDN IP distribution, we exploit the low IP-churning rates of
CDNs, which can be used to launch a degradation-of-global-
availability attack. Our results show that these attacks pose a
severe threat to CDN-powered websites.

DoS attacks are well known to cause severe damages
against websites, resulting in losses in terms of both money
and trust among the customers of these websites [22]. Because
CDN-powered websites normally operate important business
services (e.g., banks, online shopping stores, news servers), a
practical DoS attack against CDN-hidden origins can signif-
icantly disrupt the businesses and reputations of these web-
sites [58].

Our work can help CDNs to raise security awareness and
to enforce stricter secure validation that would result in the
improved security of such critical Internet infrastructure. We
have responsibly disclosed our findings to all affected CDNs
and have received positive feedback for our work.

Roadmap. In Section II, we first present a background on
CDNs and analyze the attack surface. We then sequentially
expound in Sections III to V on the three threats that have
been introduced earlier. Possible mitigation are discussed in
Section VI, related works are described in Section VII, and
our conclusion is presented in Section VIII.

II. BACKGROUND AND THREAT MODEL

A. Background

Content Delivery Network. CDNs are widely used to improve
the performance and security of websites. For a CDN-powered
website, the CDN speeds up the connection performance by
using request-routing mechanisms (e.g., Anycast or DNS-
based) [55] that redirect the web requests of clients to geo-
graphically distributed CDN surrogates (CDN ingress IPs).

Upon receiving a web request, a CDN surrogate first
examines the HTTP header fields, especially the Host and
the URI header fields. If the requested web resources are
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Fig. 1: CDN forwards requests and responses between client
and origin.

already cached in the CDN, the surrogate serves the contents
directly to the client. Otherwise, the surrogate will forward the
requests to the origin via egress IPs, as shown in Fig. 1. As a
result, the CDN separates the traditional end-to-end connection
into two stages, i.e., client–CDN connection and CDN–origin
connection, working as a man-in-the-middle between the client
and the origin.

Thus, a CDN, from its point of view, first has to work
as a protocol converter when the protocol of the client–
CDN connection differs from the protocol used in the CDN–
origin connection, e.g., the CDN converts client–CDN HTTPS
connections to CDN–origin HTTP connections, as in [41].
Second, the CDN aims to speed up the request delay of the
end user, and thus the CDN has to optimize the back-to-
origin forwarding of the request to be as fast as possible.
Lastly, to improve the CDN cache-hit ratio and reduce back-
to-origin forwarding, the CDN may add an extra caching layer
to cache the resource contents of the websites for its global
surrogates [34]. In the following sections, we shall reveal how
these three CDN features are able to lead to our attacks.

Request-Routing Mechanism. The request-routing mecha-
nism is critical for a CDN to provide the optimal CDN
surrogates for processing requests. However, this mechanism
can be bypassed if the surrogate IPs are pre-known; normal
users can directly send requests to a chosen surrogate IP
without the request-routing stage, which otherwise maps the
website domain name with the CDN surrogates. For example,
Holowczak et al. has shown that CDN-powered websites can
be accessed from arbitrary CDN surrogates [30].

HTTP/2 Protocol in CDN. The HTTP/1.1 protocol builds the
foundation of the World Wide Web. However, the repeated
redundant HTTP headers in each request and response wastes
network bandwidth and slows down connection performance.
Therefore, HTTP/2 was released to address those issues:
header compression reduces the unnecessary network traffic in
HTTP/1.1, and multiplexing streams allows multiple requests
in a single TCP connection [8], [49]. Currently, almost all
CDNs claim that they support the HTTP/2 protocol [60].

Brief Comparison of CDN Vendors. The global CDN service
market is worth billions of dollars and is growing at an
increasingly fast rate, with several CDN vendors competing
in this booming market. According to CDN market share
reports [18], [19], Akamai, CloudFront, Cloudflare, and Fastly
are the key players in this market [33], and thus these vendors
should naturally be in the scope of most research on CDN.
However, because Akamai provides CDN services to enterprise
customers only, it is not included in our study.

Thus, for this study, we choose six CDN vendors (Cloud-
Front, Cloudflare, and Fastly, which are three of the key
players mentioned earlier, together with CDNSun, KeyCDN,
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and MaxCDN) that provide free-trial account registrations to
individual users. Among these six CDN vendors, five require
email registration only, and only CloudFront requires an extra
credit card verification. From the point of view of attackers,
these kinds of CDN vendors, that do not require stringent iden-
tity verification, enable attackers to reveal and exploit specific
CDN forwarding behaviors, without exposing their sensitive
personal information. Furthermore, these six CDN vendors
involve two primary request-routing mechanisms: Cloudflare
and MaxCDN use Anycast routing, whereas the other four
CDNs use DNS mapping, which helps to increase our research
coverage. In the following sections, although we explore only
the feasibility of our attacks against these six CDN vendors,
we believe that these attacks are also applicable to other CDN
vendors not included in this study.

B. Threat Model

Crafted Legal Requests CDN-rendered Attacking Connections 

Origin ServerAttacker CDN

Fig. 2: Launching a DoS attack against a CDN-hidden origin.

In general, websites employ CDNs to improve their se-
curity and global availability. CDNs normally provide web
application firewall (WAF) services to normalize requests to
the website origins. Furthermore, CDNs can absorb distributed
denial-of-service (DDoS) attacks by leveraging a large number
of geo-distributed surrogates. Lastly, by hosting on CDNs,
websites can hide their “true” origin IP addresses away from
potential attackers.

In this study, we assume an attacker, as a normal client,
is able to craft malicious but legal requests to the CDN. We
also assume that the victim website is being hosted on the
CDN (or being unwittingly hosted on the CDN by a mali-
cious CDN customer, further explained in Section VI). Here,
through an empirical study, we aim to discover some specific
but fundamental CDN characteristics that can be abused. In
particular, if the forwarding mechanisms of a CDN can be
abused, an attacker may able to manipulate the CDN–origin
connections. As a result, these malicious connections may
exhaust the limited network resources of the origin, resulting
in a DoS attack against the origin, as shown in Fig. 2.

III. HTTP/2 BANDWIDTH AMPLIFICATION ATTACK

Up until now, from our experiments, we find that in
their client–CDN and CDN–origin connections, CDNs support
HTTP/2 only in client–CDN connection. Thus, when receiving
an HTTP/2 request, a CDN has to convert the HTTP/2 request
into an HTTP/1.1 request, which could introduce new attacking
vectors during the protocol conversion process. In this section,
by further exploring the protocol-converting behaviors across
the six CDNs, we reveal that all six CDNs can be leveraged
to launch a bandwidth amplification attack against the origins
of the websites that they are servicing.

A. Attack Surface Analysis

Half-Done HTTP/2 Support. Almost all CDN vendors claim
that they currently support HTTP/2 [60]. However, because a
CDN has to maintain both the client–CDN connection and
CDN–origin connection, the HTTP/2 forwarding behaviors
have not yet been studied in detail. Here, we first explore the
HTTP/2 support behavior of a CDN by setting up the origin of
our website as an HTTP/1.1-only server, as an HTTP/2-only
server, and as an HTTP/1.1&HTTP/2 server. We then use the
tool curl as a client to access the CDN service in HTTP/2
protocol.

TABLE I: CDN–origin protocol. CDNs support HTTP/2 in
client-facing connections but use only HTTP/1.1 to connect to
the origin.

client–CDN
Protocol

CDN–origin Protocol
(HTTP/1.1 origin)

CDN–origin Protocol
(HTTP/2 origin)

CDN–origin Protocol
(HTTP/1.1-2 origin)

CloudFront HTTP/2 HTTP/1.1 HTTP/1.1 HTTP/1.1

CloudFlare HTTP/2 HTTP/1.1 HTTP/1.1 HTTP/1.1

CDNSun HTTP/2 HTTP/1.1 HTTP/1.1 HTTP/1.1

Fastly HTTP/2 HTTP/1.1 HTTP/1.1 HTTP/1.1

KeyCDN HTTP/2 HTTP/1.1 HTTP/1.1 HTTP/1.1

MaxCDN HTTP/2 HTTP/1.1 HTTP/1.1 HTTP/1.1

Experiments have revealed that, as shown in Table I,
CDNs support HTTP/2 in client–CDN connection but use only
HTTP/1.1 in the CDN–origin connection, even when the origin
supports HTTP/2. Consequently, these CDNs have to convert
web requests between HTTP/2 and HTTP/1.1 protocols, which
may introduce new security threats. Even worse, as shown
in Table II, these CDNs, except Fastly, turn on HTTP/2
client–CDN connection support by default for their customer
websites, directly exposing their customer websites to possible
protocol conversion threats. Furthermore, the resulting severity
increases because three of the CDNs (Cloudflare, CDNSun,
and KeyCDN) do not even provide an option to turn off such
HTTP/2 support.

TABLE II: HTTP/2 support statuses of the CDNs included in
this study. Five of the six CDNs enable HTTP/2 support by
default for their customer websites.

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

HTTP/2 Support Default On
Configurable Default On Default On Default Off

Configurable Default On Default On
Configurable

Primer on HTTP/2. The primary goals of HTTP/2 are to
reduce latency and minimize protocol overhead. Primarily, the
HTTP/2 protocol supports multiple concurrent bidirectional
streams within a single HTTP/2 connection, thus reducing
unnecessary TCP handshake processes and supporting full re-
quest and response multiplexing [8]. For example, in a client–
CDN connection, a client makes one HTTP/2 connection with
the CDN, using two streams to request resources through
“path1” and “path2,” as shown in Fig. 3.

In HTTP/1.1, header fields are not compressed. Because
web pages have grown to require dozens to hundreds of
requests, the redundant header fields in these requests unnec-
essarily consume bandwidth. Therefore, in HTTP/2, HPACK
header compression is introduced primarily to reduce unnec-
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Get /path1 HTTP/1.1
Host: victim.com
Cookie: a=large-string
Cookie: b=large-string

HTTP/2
HTTP/1.1

:path: path1
:Authority: server.com
Cookie: a=large-string
Cookie: b=large-string

---------Stream1--------

--------Stream2-------
:path: path2

Get /path2 HTTP/1.1
Host: victim.com
Cookie: a=large-string
Cookie: b=large-string

CDN Origin ServerAttacker One TCP Connection
         2 Streams

Fig. 3: HTTP/2-HTTP/1.1 conversion has to decompress and
expand HTTP/2 requests, resulting in bandwidth amplification.

essary network traffic caused by the repeated request and
response headers in HTTP/1.1 [49].

According to the HPACK mechanism, within the client–
CDN connection, both the client and CDN (as an HTTP/2
server) maintain an indexed dynamic table of previously
seen header values, and subsequent repeated header fields
are substituted as an index referencing a value in the table.
Because many header fields, e.g., :authority, cookie,
and user-agent are repetitive, this mechanism has a very
high table-hitting ratio. Thus, instead of full header fields, the
substituted indexes are transmitted in the network, reducing
the transferred bytes.

Accordingly, when the client opens a second stream to send
another “path2” request, the repeated header fields, such as
cookie, are substituted as indexes (and thus these fields are
not shown in “stream2” of Fig. 3). These mechanisms greatly
reduce the header overhead and improve transfer performance.

Attack Principle. When a CDN forwards these requests
to the origin, all header fields indexed in HTTP/2 must
be expanded into HTTP/1.1 requests, leading to bandwidth
amplification. As shown in Fig. 3, this mechanism results in
two large-sized HTTP/1.1 requests with the same large-sized
cookie, which leads to a bandwidth amplification in the
CDN–origin connection, with an amplification ratio of almost
2. An unsymmetrical bandwidth-consuming attack that takes
advantage of this mechanism was evaluated by Beckett et al.
on an experimental testbed with proxy software Nginx and
nghttp2 [7], but to our knowledge, no real-world experiments
on this kind of attack have been performed yet.

As we can see, within one HTTP/2 connection, the ampli-
fication ratio is linear with respect to the number of concurrent
streams. The maximum values for concurrent streams are nego-
tiated when an HTTP/2 connection is established. We measure
the stream limits of the CDNs and list them in Table III. Across
all six CDNs, the maximum allowed concurrent streams are all
bigger than 100 (the recommended value in the RFC [8]).

TABLE III: Limits set by CDNs on HTTP/2 streams.

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Max Concurrent Streams 128 256 128 100 128 100
Dynamic Table Size 4KB 4KB 4KB 4KB 4KB 4KB
Max Entry Size 3072B 3072B 3072B 3072B 3072B 3072B

Therefore, for an attacker to achieve the maximum am-
plification ratio in CDN–origin connections, crafted attacking
HTTP/2 requests can all use a header field with the same

large-sized value, e.g., cookie with a large-sized value, given
that it is widely used in HTTP requests. Besides the cookie
field, the attacker can also use other header fields defined in
the HTTP/2 protocol, such as user-agent and referer,
which are also forwarded to the origin. The size of the header
field value is limited by the size of the indexed dynamic table,
which is also negotiated during the HTTP/2 connection. As
shown in Table III, the maximum table entry size across the
CDNs is 3072 B, and the table size is 4 kB. Thus, crafted
attacking HTTP/2 requests can use two header fields to fill
the indexed table, resulting in the converted HTTP/1.1 CDN–
origin requests to have the maximum size.

B. Real-World Attack Analysis

Experiment Setup. Based on the previously explained anal-
ysis, we further evaluate the severity of such an amplification
attack across the six CDNs. After deploying an Apache server
behind each CDN, we initiate an HTTP/2 connection to each
of the six CDNs to send attacking requests which are crafted
as

:path: /?<random_string> (or /)
:scheme: https
:authority: victim.com
:method: GET
cookie: A=X...X (a large-sized string)
cookie: B=X...X (a large-sized string)

To achieve the maximum amplification ratio, we use two
cookie fields with large-sized strings to fill the 4 kB HTTP/2
dynamic table. Given that the maximum table entry size is
3072 B, the lengths of two cookie values are calculated
by subtracting additional overhead bytes from the total 4
kB dynamic table size. The additional overhead bytes are
determined by table entry overhead and other header field
values, e.g., :authority and user-agent. These two
cookies stay the same in all concurrent streams, thus they will
be transferred in the same way as indexes except for the first
stream. Note that we actually use two types of :path header
field values to evaluate the amplification ratio; the reason for
this will be discussed later in this section.

In our experiments, to explore the impact of concurrent
streams on the amplification ratio, we change the number of
concurrent streams within one HTTP/2 connection and use
tcpdump to capture the traffic in both the client–CDN connec-
tion and CDN–origin connection to evaluate the amplification
factor.

Experiment Results. According to Fig. 4, when the number
of concurrent streams grows, the bandwidth amplification ratio
also grows. As shown in Fig. 5, when the number of concurrent
streams grows, the packet amplification ratio also grows. When
the concurrent streams reach the maximum allowed number
for one HTTP/2 connection, the amplification ratio reaches
the maximum. When the stream number grows beyond the
maximum allowed number for one HTTP/2 connection, our
HTTP/2 client has to wait for the previous streams to close,
and the packets ratio drops, as shown in Fig. 5. Meanwhile,
the bandwidth amplification ratio fluctuates after the maximum
number of allowed concurrent streams is reached.

The bandwidth amplification ratios are summarized in
Table IV; we will illustrate the difference between the 2nd
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Fig. 4: Bandwidth amplification ratio when the number of con-
current streams increases (:path: /?random_string).

Fig. 5: Packets amplification ratios when the number of con-
current streams increases (:path: /?random_string).

and 3rd rows later. We can see that this HTTP/2–HTTP/1.1
conversion threat is realistic; it can break the CDN protection
and cause a severe DoS attack against the origin.

Analysis of Amplification Factors. From the given illus-
tration, we can see that the bandwidth amplification ratio is
determined primarily by the number of concurrent streams.
From further analysis of the HTTP/2 specification, we also
find other influencing factors, such as the Huffman encoding
and the :path header field, that contribute to the bandwidth
amplification ratio.

• Huffman encoding: In the HPACK compression mech-
anism, Huffman encoding is applied to further compress the
header values. This Huffman code is statistically generated for
HTTP headers, wherein ASCII digits and lowercase letters are
given shorter encoding [49]. The shortest encoding for one
byte is 5 bits long; therefore, the highest compression ratio
achievable for one byte is 8 bits : 5 bits Huffman code (37.5%
smaller). Thus, besides the concurrent streams, Huffman en-
coding can also be abused to maximize the amplification
ratio. Because HTTP/2 headers are firstly compressed with
Huffman encoding and will be decompressed in the CDN–
origin connections, the resulting HTTP/1.1 headers will be
nearly 8/5 = 160% larger in size.

Therefore, in our experiments, the two cookie values are
composed of the characters 0, 1, 2, a, c, e, i, o, s, or t,
which have the shortest Huffman encoding (5 bits) defined
in the RFC [49]. With Huffman encoding, we achieve the
amplification ratios listed in Table IV.

TABLE IV: Maximum amplification ratios across the CDNs.

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Streams 128 256 128 100 128 100
Bandwidth Ratio
(:path: /?random string) 99.6 132.6 99.5 89.0 96.8 82.3

Bandwidth Ratio
(:path: /) 116.9 166.1 118.7 97.9 105.5 94.7

• :path header field: In our experiments, we also find
that the :path header field contributes to the amplification
ratio. If we use :path: / directly in all of our attacking
requests, given that it is a predefined index in the static
table1, only 1 B needs to be transmitted in all of the HTTP/2
concurrent streams. However, in the World Wide Web, URLs
can be of varying lengths, and an attacker normally uses
random URLs to bypass CDN caching or WAF rules. There-
fore, we also append different random strings to the :path
header field in each HTTP/2 stream, in the form :path:
/?random_string.

TABLE V: Length of the :path header field during HTTP/2
and HTTP/1.1 conversion.

HTTP/2 client–CDN Connection HTTP/1.1 CDN–origin Connection

Header Field Transmission Length URL Transmission Length
:path: / 1 bytes / 1 bytes
:path: /?xxxyy 8 bytes /?xxxyy 7 bytes

As shown in Table V, the :path: / header field is also
converted into 1 B in each resulting HTTP/1.1 connection.
When we use a random value /?random_string in the
:path header field in each HTTP/2 request, the random value
in that field is a non-repetitive value and is therefore not present
in the dynamic table. According to the HPACK mechanism,
the value will be encoded in either its raw form or using the
Huffman encoding form (the shorter of the two). In Table V,
we can see that :path: /?xxxyy consumes 8 B in HTTP/2
(1 B for the index of :path field, and 7 B for /?xxxyy 2),
and the converted URL in each HTTP/1.1 request will be 7 B.

In our experiments, we send these two types of :path
headers to evaluate the bandwidth amplification ratio and
obtain different results, as listed in Table IV. The reason
for these differences is that when the number of concurrent
HTTP/2 streams grows, the length of the :path header field
begins to influence the amplification ratio. In our experiments,
when the :path: / form is used, the network traffic of the
attacker–CDN connection front-end traffic (FB) is in the order
of thousands, e.g., 5,000 bytes per second, whereas the network
traffic of the CDN–origin connection back-end traffic (BB) is
in the order of millions, e.g., 600,000 bytes per second. The
amplification ratio is BB/FB . On the other hand, when the
:path: /?xxxyy form is used, and we send n (e.g., 100,
128, or 256, i.e., the maximum values in Table III) concurrent
HTTP/2 streams, the network traffic of the attacker–CDN
connection, compared with for the ‘:path: / form, will be

1According to the HTTP/2 specification, the HPACK mechanism uses
an additional static table to predefine common header fields associated with
frequently occurring values, e.g., :path: / is predefined in the indexed table
as index 4 [49].

2We generate a different random string in each request. Here, we neglect
the chances that the Huffman encoding may compress the random string to
shorter than 7 B.
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(FB + 7n) (n HTTP/2 streams, 8 − 1 = 7 B larger in each
stream), and the network traffic of the CDN–origin connections
will be (BB + 6n), (n HTTP/1.1 connections, 7 − 1 = 6 B
larger in each connection). Thus, for the :path: /?xxxyy
form, the amplification ratio will be (BB + 6n)/(FB + 7n).

As we have illustrated, FB is in the order of thousands,
whereas BB is in the order of millions. Therefore, we have the
following mathematical inequality:

BB

FB
>

BB + 6n

FB + 7n
. (1)

For example, assuming FB = 5, 000 and BB = 600, 000
for simplicity, when we use 128 or 256 for n (the number of
concurrent streams), the inequality becomes

BB

FB
=

600000

5000
>

600000+128 ∗ 6

5000+128 ∗ 7
=101.9 >

600000+256 ∗ 6

5000+256 ∗ 7
=88.6. (2)

Therefore, we can see that, to achieve the maximum
amplification ratio, the HTTP/2 attacking requests should be
specially crafted to use the HPACK indexing mechanism as
much as possible.

Summary. For the attack, we conducted a controlled ex-
periment to obtain the network traffic amplification ratio by
establishing just one HTTP/2 connection with one CDN node.
However, from the perspective of an attacker as a client, he
can initiate thousands of HTTP/2 connections with different
CDN nodes (e.g., we found 128,906 CloudFront IPs, which
can be used for the attack; please refer to Table IX for the
number of IPs of other CDNs). According to the amplification
ratio we obtained, the network bandwidth of CDN–origin
connection can be seriously consumed, adversely influencing
the performance of the origin.

Given that HTTP/2 support is turned on by default across
five of these six CDNs, and cannot even be turned off across
three of the CDNs, we can see that this threat is severe and
affects all websites hosted on these CDNs.

IV. PRE-POST SLOW HTTP ATTACK

In this section, we introduce the pre-POST slow HTTP
attack, which leverages CDN infrastructure to perform a DoS
attack against the origin. Compared with traditional DoS
attacks that rely on massive bots [1], [43], [51], this attack is
stealthier and harder for the origin to defend against, because
the crafted requests are legal and are initiated from the CDN.

A. Attack Surface Analysis

The pre-POST slow HTTP attack aims to exhaust the
connection limits of the origin and starve other legitimate
user requests. To the origin, the attack acts the same as a
traditional slow POST attack [23], [55]. Normally, as the
CDN decouples the client–CDN (including attacker–CDN) and
CDN–origin connections, the CDN naturally defends against
traditional slow POST attacks. However, with experiments, we
find that three out of the six CDNs start forwarding HTTP
POST requests just upon receiving the POST header, without
waiting for the whole POST message body. We reveal that this
pre-POST behavior empowers an attacker to keep the CDN–
origin connections to remain open as long as possible, thus

allowing the attacker to exhaust the connection limits of the
origin. In this section, we first review the traditional slow
HTTP attack, and then we further analyze how three out of
the six CDNs are susceptible to this pre-POST threat.

Primer on Slow HTTP DoS Attack. According to the
Kaspersky Q4 2018 Intelligence Report [47], the total duration
of HTTP-related attacks has been growing, accounting for
about 80 percent of DDoS attack time for the whole year. This
report finding reveals that attackers are turning to sophisticated,
mixed HTTP attack techniques, such as slow HTTP DoS
attacks.

Compared with brute-force flooding attacks, a slow HTTP
DoS attack is stealthier and more efficient. The slow HTTP
DoS attack takes advantages of the HTTP protocol having been
designed to keep the connection open until the receiving of
data is finished [23], [55]. Therefore, different stages of the
request flow can be abused to launch slow HTTP DoS attacks.
A slow Header attack sends the partial header, a slow Read
attack intentionally receives response data slowly, and a slow
POST attack sends the posted data at an alarmingly slow rate.
All these attacks aim to keep massive connections with the
target server for as long as possible, leading to an exhaustion
of the concurrent connections of the target and starving other
normal user requests [29], [48], [56].

Attack Principle. Generally, to prevent unavailability due to
DoS attacks, the CDN decouples attacker–CDN and CDN–
origin connections and absorbs any flooding traffic. However,
the applicability of slow HTTP DoS attack against CDN-
powered websites remains under-studied.

With our further analysis and real-world experiments, we
find that each of the six CDNs forwards requests only until it
receives the full HTTP header, and is therefore able to defend
against slow Header attacks. Furthermore, when forwarding
an HTTP GET request, the CDN–origin transmission is in-
dependent of the attacker client–CDN transmission; therefore,
the CDN is able to stop slow Read attacks.

However, we find that CDNs present two different POST-
forwarding behaviors. When a CDN receives a POST request
for the origin, the CDN faces the choice of when to forward
the POST request to the origin. For simplicity, the CDN
can forward the POST request only after it finishes receiving
the whole POST message. However, the POST request may
contain a large-sized message body, which would take a long
time to receive and therefore delay the request forwarding. The
CDN can also start forwarding the POST request just upon fin-
ishing receiving the POST request header and then sequentially
forward the subsequently received POST message within the
same HTTP connection. This pre-POST-forwarding behavior
can certainly facilitate the origin into receiving the POST
request earlier; however, it also enables an attacker to keep
the CDN–origin connections open for as long as possible.

B. Real-World Attack Analysis

Experiment Setup. In our experiment, we set up a self-built
Apache web-server and deploy it as a website origin behind
the six CDNs, one at a time. The concurrent connections limit
of the Apache web server is configured with a default value
of 1000 [3].
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From the view of an attacker, we craft POST requests
to explore the request-forwarding behaviors of the CDNs. In
particular, to POST a large message, the attacker can specify
the size directly in the Content-Length header field, or use
Chunked-Encoding to send dynamically generated data,
both aiming to send the POST message slowly. Here, for sim-
plicity, we specify the exact size of the HTTP message body
with the Content-Length field, and the POST message
body is sent quite slowly, taking 300 s to finish transmission.

POST /login.php?<random_string> HTTP/1.1
Host: www.victim.com
Content-Length: 300

0101..... (300 bytes, 1 byte sent per second)

At the same time, at the website origin, we use the tool
tcpdump to capture the timestamp (relative to our request
sending time) upon receiving the CDN-forwarded HTTP POST
request, and how long the CDN–origin connection is kept
open. After sending 1000 concurrent POST requests, and
repeating this procedure for 30 times, we obtain the averaged
results shown in Table VI.

TABLE VI: Time data from sending slow POST requests
(lasting 300 s). Three CDNs start forwarding POST requests
as soon as they receive the POST header.

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Request
Receiving Time 0.87s 300.29s 299.92s 0.55s 299.79s 0.74s

Connection
Keep-open Time 298.89s 0.12s 0.34s 299.32s 0.37s 15.01s

We can see that CloudFront and Fastly start to forward
POST requests as soon as they receive the forwarding request
header, whereas CDNSun, KeyCDN, and Cloudflare start to
forward a POST request only after receiving the whole mes-
sage. MaxCDN also starts to forward POST requests 0.74
s later but aborts the connection when the kept-open time
exceeds 15 s.

Apparently, for CloudFront, Fastly, and MaxCDN, the
kept-open time of the CDN–origin connection depends on
the kept-open time of the client–CDN connection, which is
directly under the control of the client, and thus of a potential
attacker. Therefore, this pre-POST-forwarding behavior can be
leveraged to launch a slow HTTP DoS attack: an attacker can
establish and maintain hundreds or even thousands of these
POST connections concurrently, leveraging the CDN (and thus
adversely affecting the origin). It will quickly exhaust all the
connection resources of the origin and starve other normal
requests, breaking the DoS protection given by the CDN.

Experiment Results. Further, we evaluate such pre-POST
attack against our self-built origin web server (with a connec-
tion limit of 1000), through CloudFront, Fastly, and MaxCDN
for 300 s. From another vantage point, as a normal client,
we periodically measure the client–CDN–origin request delay
every 5 s to probe whether the connection resources of the
origin are exhausted or not.

For CloudFront and Fastly, to exhaust the 1000-connection
limit of our origin, we concurrently send 1100 slow POST
requests to the CDN, as shown in Fig. 6. At the origin, the

Fig. 6: Establishing more than 1000 connections, from 100 s
to 400 s.

Fig. 7: Response time of a normal client during a slow HTTP
POST attack.

connection resources are exhausted, and other requests are
starving. Thus, as shown in Fig. 7, the request delays of a
normal client rise to 90 s for CloudFront (returns HTTP 504
Gateway Time-out) and 15 s for Fastly (returns HTTP 503
Service Unavailable), demonstrating the success of the DoS
attacks.

Because MaxCDN will abort the POST connection after 15
s, we periodically start 100 new concurrent connections every
second during the attack period. As shown in Fig. 6, the con-
nection number fluctuates at around 1500, as MaxCDN aborts
the previous 15-s-lasting connections sequentially. Meanwhile,
as shown in Fig. 7, the request delay of a normal client
fluctuates below 15 s, as the normal client request competes
with attacking requests for the released connection resources.
This phenomenon of MaxCDN demonstrates a quality of
service (QoS) attack, which aims to degrade performance
rather than completely disable the service.

HTTP/2 Pre-POST Attack. Given that CDNs support HTTP/2
in client–CDN connections (as explained in Section III), we
also further evaluate slow HTTP/2 POST attacks against the
origin. To employ the multiplex stream feature of HTTP/2, we
establish 10 simultaneous HTTP/2 connections with the CDN
and send 100 POST requests in each HTTP/2 connection. The
POST requests are crafted as follows:
:method: POST
:scheme: https
:authority: www.victim.com
:path: /login.php?cdn=<cdn>&a=<time>-<range(0,1000)>
Content-Length: 300
0101..... (300 bytes, 1 byte sent per second)
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TABLE VII: Time data from sending slow HTTP/2 POST
requests (lasting 300 s). Three CDNs start POST request
forwarding as soon as they receive the POST header.

CloudFront Cloudflare CDNSun Fastly KeyCDN MaxCDN

Request
Receiving Time 0.42342s 300.82689s 300.47039s 1.42386s(10)

300.50451s(990) 300.49957s 0.91270s

Connection
Keep-alive Time 300.48742s 0.21612s 3.22843s 299.41059s(10)

0.84946s(990) 3.08003s 15.01520s

As shown in Table VII, we obtain the same POST for-
warding behaviors as in HTTP/1.1, except for Fastly. The
result reveals that Fastly starts the pre-POST forwarding of
the first request for each connection, with 10 CDN–origin
connections having an average kept-open time of 299.41059
s. Meanwhile, the subsequent POST requests within the same
connection are queued in Fastly for 300 s, during which Fastly
has to finish receiving the subsequent whole POST message,
resulting in 990 CDN–origin connections having an average
kept-open time of 0.84946s. We presume the reason for this
phenomenon is that Fastly maintains a POST request queue for
each HTTP/2 connection, and thus subsequent POST requests
are to be forwarded only after the foremost POST request has
been finished.

To the target origin, this connection-exhaustion attack
works in the same way as direct slow HTTP attacks but
consumes fewer resources from the attacker, e.g., the attacker
needs to maintain just one connection with the CDN, which is
then abused to proxy and maximize simultaneous CDN–origin
connections.

Summary. With real-world experiments, three out of the six
CDN vendors are shown to support pre-POST forwarding.
This pre-POST-forwarding behavior introduces a new attack-
ing vector to break the CDN protection and enable resource
exhaustion attacks against the origins of the CDN-powered
websites.

V. DEGRADATION-OF-GLOBAL-AVAILABILITY ATTACK

Because the request-routing mechanisms of a CDN can be
bypassed, and CDN surrogate servers can be accessed directly
(as explained in Section II-A), an attacker can directly send
crafted attacking requests to the globally distributed ingress IPs
to render the threats described in Section IV and Section III
into DDoS attacks, as shown in Fig. 8.

After collecting a massive number of CDN ingress IPs
(surrogate IPs), we evaluate the feasibility of a CDN-rendered
DDoS attack. We find that, compared with the number of
ingress IPs that we used, the number of egress IPs that a
CDN uses to forward requests to the origin with is smaller,
resulting in a much lower egress IP-churning rate. We therefore
present the possibility that this lower IP-churning rate can be
leveraged to effectively degrade the global availability of the
CDN-powered websites.

In this section, we first reveal how to find the ingress and
egress IP distributions of a CDN, illustrate the low IP-churning
rate of the egress IPs, and explain the degradation-of-global-
availability attack.

 Request 1 

Origin Server

CDN

Surrogate
IP 1

Surrogate 
IP n 

Egress
IP 1

Egress
IP m

Surrogate
IP 2

Egress
IP 2 Request 2 

 Request n 

Fig. 8: Through sending of requests to ingress IPs directly to
simulate global access, a CDN is abused to proxy a DoS attack
into a DDoS attack.

A. CDN Ingress and Egress IP Distribution

Instinctively, to determine the ingress and egress IP ad-
dresses of a given CDN, we can directly find the IP ad-
dresses of the CDN either from the ICANN WHOIS database
or from officially published information provided by some
CDN vendors [14], [15], [21]. However, WHOIS information
may be incomplete or obsolete (various European registrars
have stopped collecting information for the ICANN WHOIS
database because of the GDPR’s principle of data minimiza-
tion [17]), and the officially published addresses are just IP
address ranges that do not separate the ingress IP addresses
from the egress IP addresses.

Because we need an in-depth analysis of how a CDN
assigns the ingress and egress IP addresses when receiving
an end-user request, we explore the ingress IP distribution via
an Internet-wide scan and unveil the egress IP distribution by
sending requests to all ingress IP addresses directly to simulate
global end-user accessing.

Ingress IP Distribution. With our website deployed behind a
CDN, an Internet-wide HTTP scan is a direct method to collect
the ingress IPs, through which we can access the contents
of our website. To avoid offensive Internet scanning in this
study, we first use Censys [11] Internet HTTP scanning data
to filter possible ingress IPs. The Censys project scans TCP
port 80 with the Host header filled with the scanned IP
address, and the CDN surrogate servers will return distinctive
error HTTP responses (header or body) when they are being
accessed with this incorrect IP-form HTTP Host header, as
shown in Table VIII.

TABLE VIII: Characteristics of HTTP response. CDN surro-
gate servers will return distinctive error HTTP responses when
receiving incorrect Host headers.

CDN Status Code Response

CloudFront 403 Header: “Server: CloudFront”
CloudFlare 403 Header: “Server: cloudflare”
CDNSun 400 Header: “X-Edge-IP/X-Edge-Location”
Fastly 500 Body: “Fastly error”
KeyCDN 403 Header: “Server: keycdn-engine”
MaxCDN 200 Header: “Server: NetDNA-cache/2.2”

We then actively send requests to these filtered IPs with
our website domain name in the Host header; the IPs through
which we can access our origin are collected as ingress IPs.
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TABLE IX: CDN IP distribution. CDNs employ much fewer
egress IPs compared with ingress IPs (N1: number of IPs, N2:
number of BGP Prefixes, N3: number of BGP ASes).

Requesting Ingress IP Egress IP Percentage of requests
Routing N1 N2 N3 N1 N2 N3 when EgressIP=IngressIP

CloudFront DNS 128906 720 29 862 160 3 0.06%
CloudFlare Anycast 490309 93 28 242 72 1 0%
CDNSun DNS - - - - - - -
Fastly DNS 64659 170 34 1136 56 1 0.02%
KeyCDN DNS - - - - - - -
MaxCDN Anycast 300 16 2 12 12 2 3.82%

As shown in Table IX, we find a large number of ingress IPs 3.

Egress IP Distribution. For our experiments, we first set
up an origin server, which will record incoming egress IPs
and requested URLs. From a client, we directly send requests
to all ingress IPs that we found. These requests are tailed
with different query strings to avoid the cache-hit of the
CDN, e.g., http://IngressIP1/i.php?IngressIP1.
The CDN then forwards these requests to our origin server
through different egress IPs. Finally, from the data recorded
at the origin server, we collect the egress IPs and extract the
corresponding ingress IPs from the URL query strings.

To collect as many egress IPs as possible, we send requests
hourly for 24 hours to the ingress IPs and record the resulting
data at the origin. The number of the egress IPs, after dupli-
cates are removed, are shown in Table IX, together with their
BGP prefixes and ASes (determined by data from the Route
View Project [50]). From Table IX, we can see that even if
a CDN has a massive number of ingress IPs, the CDN will
group incoming requests and assign a small set of egress IPs
to forward the requests to the origin. We also find that, for
each of the forwarded requests, the egress IP of the request is
different from the ingress IP, e.g., in the 24-hour scale, only
0.06% of the requests we send through CloudFront have the
same ingress/egress IP, whereas the corresponding percentages
for the other CDNs are 0% for Cloudflare, 0.02% for Fastly,
and 3.82% for MaxCDN.

Further, within the same 24-hour measurement duration, we
analyze the egress IP-churning rate (or occurrence ratio), which
describes how frequently a CDN repeatedly assigns the same
egress IP. In Fig. 9 (with the Y-axis in logarithmic scale), for
simplicity, we just plot the ratios for the top 32 most assigned
egress IPs 4. From Fig. 9, we can see that 96.32% of the
MaxCDN requests come from one single Egress IP. In other
words, MaxCDN has assigned most of the requests through
just one single egress IP. For the other CDNs, on the other
hand, we can see in Fig. 9 that their egress IPs are assigned
more evenly or randomly, where no egress IP is charged with
more than 10% of the requests.

Impact of Origin Location. We can see that some CDNs
assign a small set of egress IPs to access the origin and do not

3We cannot filter any CDNSun IPs from the Censys data, and we can
filter only 155 KeyCDN IPs but cannot access our website through these
IPs. Querying the open DNS resolvers is another operational method to find
ingress IPs [31], [34], but the result is totally determined by the data-set of
open DNS resolvers (i.e., how many and how globally geo-distributed these
open resolvers are). We think the result of Internet scanning provides a better
coverage, because we find more ingress IPs using the Internet scanning method
than using the DNS querying method used in [34].

4These 32 IPs are obviously different across CDNs, we just use IP0 to
IP31 to symbolize the mostly assigned IPs for each CDN.

Fig. 9: Occurrence ratios of the 32 egress IPs with the highest
occurrences (in descending order).

churn these IPs quickly. To verify if the location of the origin
will affect the attack, or in other words, whether the MaxCDN-
assigned egress IPs are a function of the origin IP, we set up
and conduct experiments with origin servers located in Silicon
Valley, Singapore, and Beijing, and determine that the most
assigned egress IP is the same for these different locations.
Further, our results are consistent with [34], which is published
after our work. L. Jin et al. studied the address spaces of the
ingress IPs of three CDN vendors (i.e., Cloudflare, CloudFront,
and Fastly) by resolving the IPs through public Open DNS
resolvers, and further explored egress IP addresses using the
same method as ours. They found fewer ingress IPs than we
did and confirmed that the address space of the egress IPs
is quite limited and churning at an extremely low rate. They
also reveal that this lower egress IP churning rate is due to
the internal two-layer structure of the CDN, composed of a
client-facing layer for receiving client requests, and an origin-
facing layer for fetching requested contents from the origin.
This two-layer structure improves the CDN cache-hit ratio and
lowers the workload of the origin. However, we can see that
this lower IP-churning rate also makes attacks on CDN–origin
connections much easier.

B. Attack Surface Analysis

A CDN provides a website with global availability via
its massively geo-distributed surrogate servers. If an attacker
wants to stop or degrade the global availability of a CDN-
powered website, the most obvious method is to launch a DoS
attack against the origin directly. However, the IP address of
the origin is difficult to determine without relevant historical
data [58] or accidental leakage of information [35]. Thus,
to attempt the second-best method of attack, the attacker can
try to invade and control some on-path network infrastructures
(e.g., routers or firewalls), to be on-path in client–CDN con-
nections or CDN–origin connections to block the relevant IPs.
However, because the CDN surrogates are globally distributed
with massive numbers of IP addresses, it is impossible for an
attacker (even for a state-sponsored attacker) to be on-path
in all client–CDN connections or CDN–origin connections.
Therefore, on the premise that the attacker can just block just a
few connections, normally the attack can not affect the global
availability of the website.

Here, as shown in Fig. 10, we visualize a threat model
that an attacker can cut off only one or a small set of
CDN–origin connections and who aims to degrade the global
availability of a CDN-powered website. We argue that this
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Fig. 10: Degradation-of-availability attack. When a CDN as-
signs global requests through one or a small set of egress IPs,
cutting off just one or a small set of CDN–origin network paths
can effectively block most global requests to a website.

threat model is practical, because it requires an attacker to
invade and control much fewer on-path network infrastructures
(e.g., router or firewall) to cut off one or a small set of CDN–
origin connections, or an attacker can launch the crossfire
attack [37] to stealthily cut off the Internet connections of
one or a small set of CDN nodes by flooding network links
around the CDN nodes. Based on this threat model, we further
evaluate the feasibility and severity of the degradation-of-
global-availability attack.

C. Real-World Attack Analysis

Experiment Setup. We can see that, according to Fig. 9,
degrading the availability of our MaxCDN-powered website
requires cutting off just one CDN–origin connection (i.e.,
blocking one egress IP), whereas for the other CDNs, the attack
requires cutting off more connections.

In our experiments, we send requests at hour 0 to all of the
ingress IPs of a given CDN to simulate global clients accessing
our website and obtain the number of successful requests as
the base for calculating the following accessing ratios.

Afterward, starting from hour 1, the most assigned egress
IPs are blocked to simulate the cutting off of CDN–origin
connections (e.g., a crossfire attack). For MaxCDN, we block
just one egress IP in an on-path firewall, whereas for the other
CDNs, we block the top 16 most assigned egress IPs. We still
hourly send requests to the same sets of ingress IPs repeatedly
for 12 hours, to simulate global clients accessing, and record
the successful-access ratios. Note that all requests are sent with
random URLs to bypass CDN caching.

Experiment Results. We plot the hourly accessing ratio in
Fig. 11. Because MaxCDN still assigns the blocked IP to
forward most requests, the accessing ratio drops to less than
10% within 12 hours. This phenomenon further reveals that
MaxCDN lacks the mechanism to detect the attack when other
egress IPs can still access the origin.

In Fig. 11, we can see that the other CDNs also lack
the mechanism to detect the attack, e.g., for CloudFront,
the accessing ratio fluctuates at around 40% after blocking,
whereas for Cloudflare and Fastly, the accessing ratios fluctuate
at around 90%, which may be attributed to their capabilities
of churning egress IPs more quickly.

Practical Analysis. Because the IP address of the origin is
hidden behind a CDN, a direct DoS attack on the origin is
impossible. We assume that an attacker (e.g., state-sponsored)

Fig. 11: Accessing ratios when the most assigned egress IPs
are blocked.

HTTP Get /badword
Blocked by TCP RST from GFW

Collateral block by TCP RST from GFW
HTTP Get /normal1
HTTP Get /normal2
HTTP Get /normal3

GFWCDN Origin Server

Fig. 12: GFW collateral blocking attack.

can cut off one or a small set of CDN–origin connections,
either by invading an on-path network infrastructure (e.g.,
router or firewall) or launching a crossfire attack to block the
Internet access of the egress nodes. Here, we further reveal how
a normal attacker can easily gain the power to cut off CDN–
origin connections in a certain network scenario that makes
the attack more practical.

It is well known that the on-path Great Fire Wall (GFW)
will inspect the HTTP connections that may pass through
it. Upon the detection of any sensitive banned words (e.g.,
ultrasurf) within an HTTP connection, the GFW will inject
TCP RST packets to shut down the connection, and the pair
of IPs in this HTTP connection will be blacklisted for nearly
90 s by the GFW [59]. In this paper, we present how a
normal attacker can abuse the power of the GFW to launch
an availability degradation attack.

CDNs still support the plain text HTTP protocol in CDN–
origin connections, which can be intercepted by on-path net-
work infrastructures [41]. When the GFW is already located
on-path between the CDN and the origin, as in Fig. 12,
an attacker can deliberately send HTTP GET requests with
GFW-banned bad words to activate the connection resetting
mechanism of the GFW.

This mechanism leads to the pair of the CDN egress IP
and origin IP being blocked for 90 s by the GFW. Within
these 90 s, when normal clients try to access the website, and
if the same CDN egress IP is assigned to access the origin,
then the GFW will continue to reset the new TCP connections
that follow, even when there are no GFW-banned bad words
in these connections. Consequently, normal clients will be
blocked from accessing the website, leading to a degradation
of the availability of the origin.
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The severity of such a degradation depends on how many
CDN egress IPs can be added into the blacklist of the GFW.
As we have illustrated, an attacker can easily harvest CDN
ingress IPs and continually send GFW-banned requests to each
of these ingress IPs. Depending on the egress IP assignment
policy of the CDN, increasingly more CDN egress IPs will be
added into the GFW blacklist. Note that the CDN assigning
a small set of egress IPs further lowers the bar of such an
attack, because adding these fewer egress IPs into the GFW
blacklist consumes much less time. Consequently, when all of
the egress IPs have been blacklisted, no clients will be able to
access the target website, resulting in the service unavailability
of the origin.

For simplicity and ethical concerns, we further evaluate the
attack against our website located in China, which is hosted
behind MaxCDN. Because the GFW resets TCP connections
sent into or out of China, and the egress IPs are all located
outside China, we set up a website in Beijing that is deployed
behind MaxCDN. Later, from the vantage point of Singa-
pore as the attacker, we continually send GET /ultrasurf
HTTP requests directly to the MaxCDN ingress IPs we find
earlier. Meanwhile, from another vantage point of Singapore
acting like normal clients, we send GET /normal HTTP
requests to verify whether the website is still accessible. As
illustrated in Table IX, to access our website origin, MaxCDN
assigns less than 12 egress IPs, which can be collaterally
blocked by the GFW and, in that event, render our website
totally inaccessible.

We admit that, as the GFW is abused, the attack can affect
only the origins located in China, when they are being accessed
through CDNs outside of China. However, we can see that
the lower egress IP-churning rate of the CDN does lower the
difficulty of the attack. As state-level Internet censorship sys-
tems and middle boxes become widespread on the Internet [4],
[16], [32], [45], [61], the threat becomes applicable to more
situations and will become more severe as time goes on.

Summary. First, we can see that, compared with the tens of
thousands of ingress IPs that a CDN normally works with,
the egress IP address space is much smaller, which helps
an attacker to narrow down the attack targets. Second, the
lower IP-churning rate lowers the difficulty of attacks on
the CDN–origin connections, e.g., access blocking (on-path
blocking or off-path DoS attack, such as the “CrossFire”
attack), traffic eavesdropping, or finding origin server IP via
historical network traffic. Therefore, we believe that this threat
may be more severe than one might suppose at first glance.

VI. DISCUSSION

A. Severity Analysis

In this paper, we reveal, using real-world measurements
across six CDNs, that the operational and architectural weak-
nesses of these CDNs can be exploited to break the DoS
protection provided by these CDNs.

For a CDN-powered website, the CDN recommends that
the origin enforce a firewall white-list to allow CDN-initiated
connections only. Because the origin has to communicate only
with the more trustworthy CDN, the origin may totally entrust
the CDN for DoS protection without enforcing any local anti-
DoS mechanisms. Thus, when the DoS protection provided

by the CDN is bypassed, it can lead to more severe damage
against the origin.

Because the CDN vendors do not validate the ownership
of the origins, a malicious CDN customer can configure any
other website as an origin behind the CDN [26]. Therefore,
the threats in this paper can also be abused to attack not only
the websites already hosted in the CDN, but also unwitting
websites not hosted in the CDN. Fastly security team has
expressed the same concern in their response to our responsible
disclosure.

B. Causes and Mitigation

Generally, the threats exist, in part, because of market
competition; the CDN vendors naturally want to provide more
functionality and achieve maximum compatibility with cus-
tomer websites of different configurations. However, the World
Wide Web ecosystem is threatened by both network and ap-
plication layer threats, and thus the full-featured functionality
offered by these CDNs, with protocol flaws or implementation
weaknesses, could be exploited to break CDN security.

HTTP/2 Bandwidth Amplification Attack. The threat arises
from the half-done HTTP/2 support of CDNs. The fact that
HTTP/2 is turned on by default for many CDNs makes
this threat more severe. We assume the reason behind this
vulnerability is that CDN vendors lack the motivation to enable
HTTP/2 in CDN–origin connections. For example, Cloudflare
states that, “The HTTP/2 protocol is focused on improving
the browser behavior now, it’s not necessary to make any
modification to the origin for enabling HTTP/2.” [25]. Another
reason may be that HTTP/2 is still not widely deployed
by websites on the Internet. According to CloudFront, “The
connection from CloudFront back to your origin server is still
made using HTTP/1. You don’t need to make any server-
side changes in order to make your static or dynamic content
accessible via HTTP/2.” [5].

Fundamentally, HTTP/2 specifications lack sufficient se-
curity consideration on HTTP/1.1-and-HTTP/2 coexistence
environments [8], [49]. Meanwhile, when CDN vendors rush
to support HTTP/2 to obtain efficiency-centered features, these
CDN vendors support HTTP/2 only in the client–CDN connec-
tions, resulting in an HTTP/2–HTTP/1.1 conversion environ-
ment not clearly defined in the related specifications. These
two factors contribute to the HTTP/2 threat. Thus, we think
CDN vendors should be conservative in supporting this new
protocol and make it as an “opt-in” option instead. Moreover, if
HTTP/2 is turned on, CDN vendors should also further restrict
the converted CDN–origin HTTP/1.1 connections.

Pre-POST Slow HTTP Attack. In general, a CDN decou-
ples traditional client–website connections into client–CDN
and CDN–origin connections, a set-up that naturally defends
against slow HTTP attacks from the client side. However,
the pre-POST-forwarding behaviors of some CDNs empower
attackers to control back-end CDN–origin connections.

The pre-POST threat takes advantage of the intention of
some CDN vendors to speed up POST forwarding, while
introducing a new attacking vector. Our study shows that three
out of the six CDNs that have been examined are vulnerable to
the threat. The most obvious mitigation is for website admin-
istrators to implement a timeout on the origin side, although
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this workaround requires configuration on every CDN-powered
website. We suggest that CDN vendors implement a stricter
POST-forwarding mechanism, such as the store-then-forward,
which has already been applied by Cloudflare.

Degradation-of-Global-Availability Attack. The egress IP
assignment strategy of a CDN is definitely implementation-
dependent. Based on our measurements, the egress IP as-
signment strategies of some CDN vendors are predictable.
MaxCDN, especially, assigns most global requests through the
same egress IP even when the origin is located in a different
region. Thus, degradation-of-global-availability attack is made
more practical for an attacker, requiring the cutting off or
blocking of fewer CDN–origin connections.

The threat exploits the emphasis of CDNs to access web
resources efficiently with fewer IP resources, i.e., to access
and cache more efficiently [40], [52]), making degradation-
of-global-availability attacks easier to perform. Therefore, to
provide more robust network services, we suggest that CDN
vendors adjust their egress IP assignment strategies to be
more unpredictable, such as by assigning more egress IPs and
churning them frequently.

Summary. The existence of these three threats unveil the pur-
suit by CDNs toward usability and efficiency, while apparently
neglecting security. Overall, we suggest the following CDN-
side mitigation, listed in Table X.

TABLE X: Recommended mitigation.

Threat Recommendation

HTTP/2 Attack opt out of the CDN HTTP/2 support,
limit the CDN back-to-origin network traffic.

Pre-POST Attack limit the number of CDN back-to-origin connections,
enforce strict store-then-forward mechanism.

Global Availability Attack apply unpredictable IP churning strategy.

Furthermore, as we show that CDN-forwarded requests
can be abused to attack website servers, we also recommend
that website servers enforce local DoS defenses, e.g., requests
filtering or bandwidth limiting, even if these website servers
are deployed behind trustworthy CDNs.

C. Ethics and Responsible Disclosure

Throughout this study, we aim to achieve a balance be-
tween real-world severity evaluations and risks of impacting
the CDN vendors, such as consuming too much bandwidth
during our experiments, which may cause bilateral damage
to the other CDN-powered websites and will introduce an
ethical problem to our academic study. Thus, we take utmost
care to prevent ethics problems in our experiments. First, our
experiments are conducted with free trial CDN accounts and
default configurations. Second, in exploring the various behav-
iors of the CDNs, we carefully use limited network resources
to generate legal HTTP requests. Third, the origin website is
implemented by ourselves. Through illustrated approaches in
our experiments, we believe we have minimized the security
risks of our experiments on the CDNs and other co-hosting
websites, and results have shown that our experiments did not
trigger any CDN anti-DoS mechanisms.

Meanwhile, we have already reported all our findings to
these CDN vendors months ago. The responses are summa-
rized in the following.

Fastly: Fastly confirms the HTTP/2 threat; they have analyzed
the report and are working with our various internal teams to
understand how they might address this issue. They confirm
that slow POST issues are problems on their infrastructure
and suggest the origin administrators implement a timeout
first, which may also be followed by the addition of a CDN
configuration option to implement a timeout on processing
the entire request body. Furthermore, they express concerns
regarding two attack scenarios: 1. Existing customers using
Fastly; 2. Unwitting victims (origins that have been configured
on a service by a malicious CDN customer). Fastly also offered
us T-shirts for thanks.

Cloudflare: Cloudflare reproduced the HTTP/2 issue with a
126× bandwidth amplification ratio, which is smaller than
our resulting 132.6×. We believe this difference is due to the
header difference with Huffman encoding and :path field.
Their newest response demonstrates that their team has been
trying to fix the threat by putting an upper bound limit on the
size of the HTTP/2 dynamic table. This vendor also rewarded
us with $200 for our efforts.

CloudFront: CloudFront have said that they thought the
HTTP/2 issue is a product of the HTTP/2 standard, and
when an origin believes that they are the target of abusive
behavior, they can engage via the AWS Abuse process. Given
that CloudFront will pass along all traffic (including POST
requests), the origins could also make use of rate-based AWS
WAF rules to specify the number of web requests that are
allowed by a client IP to mitigate the attack. However, the WAF
rules require being specifically configured by their customer
websites according to their respective website needs, which is
not a general solution.

MaxCDN: Months after we submitted our report, MaxCDN
has responded that POST requests are not forwarded to the
origin until the full payload data is received. We re-do the
experiments and observe that the slow POST issue has been
mitigated. Meanwhile, we find that the MaxCDN web user-
interface has changed, and thus we believe that the threat is
collaterally mitigated because of other upgrades. Later, they
respond that the HTTP/2 threat is already known, although
they did not respond further when we submitted the actual
GFW-based proof of concept.

CDNSun and KeyCDN: These vendors thanked us for the
messages and forwarded the issues to their CDN developers.
However, we have received no further response.

VII. RELATED WORK

CDN Security. By rerouting traffic to its globally distributed
network infrastructures with higher bandwidths, a CDN offers
a dedicated DDoS protection service to the websites that
it supports [24]. Methods and mechanisms of breaking or
bypassing CDNs are therefore a hot topic in the network
security research area. A previous study reported on CDN
forwarding-loop attacks, causing the request to be processed
repeatedly and resulting in a DoS attack between CDNs [13].
Because the CDN-decoupled frontend connection and backend
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connection can have asymmetrical bandwidths, an attacker can
abort the frontend connection to exhaust the bandwidth of the
backend connection [57].

Attackers have also been confirmed to be able to maneuver
the mappings of CDNs between clients and surrogates via
crafted DNS records [28]. With the high IP reputation and
co-hosting of popular websites given consideration, the infras-
tructure of the CDN has also been leveraged to circumvent
Internet censorship [30], [63]. Furthermore, a malicious CDN
customer can configure a target website server as an unwitting
origin behind a CDN, abusing the CDN resources to attack
target servers [26]. Therefore, as Fastly confirmed, the vulner-
abilities reported in this paper not only affect existing customer
websites using the CDN, but can also affect other non-CDN-
powered websites.

From the perspective of the CDN origin, prior works are
focused mainly on sensitive information disclosure and mis-
configuration. Attackers are highly interested in determining
the IP addresses of CDN-powered website origins to directly
bypass CDN protection [58]. Furthermore, the DNS resolution
flaw of CDNs could also possibly leak the IP addresses of the
origins [35].

Because of the conflict between the man-in-the-middle
nature of CDN and the end-to-end encryption nature of HTTPs,
prior researchers have explored the TLS key management
problems, such as private key sharing and inefficient revo-
cation, in CDN platforms [10], [41]. Further, by exploiting
inconsistent interpretations of HTTP header fields between the
CDN and origin, CDN caching mechanism can be abused to
launch cache poisoning attacks [12], DoS attacks [46], and
cache deception attacks [42].

Unlike previous researches, our work explores threats in
CDN forwarding behaviors that have not yet been well studied,
providing a complement to existing CDN security research.

HTTP-Related DoS Attacks. The HTTP DoS attack can be
launched simply, when legitimate HTTP requests are initi-
ated in large numbers [36]. Furthermore, configurations and
functions related to the HTTP service can introduce new DoS
attacking vectors [39]. The HTTP DoS attack is an application-
layer attack, posing challenges for detection because the attack-
ing requests appear similar to normal end-user requests [27],
[54], [62]. In this paper, we present issues in the request-
forwarding process of the CDN. Whereas the CDN is normally
considered as an effective anti-DDoS solution for websites, our
study shows that the CDN itself can be abused to launch the
attack, breaking the CDN DoS protection.

In the HTTP/1.1 era, slow HTTP attacks are already well
known [29], [48], [56], but the advent of HTTP/2 introduces
new attacking vectors. Beckett et al. has reported that HTTP/2
helps to scale up the magnitude of HTTP flood DDoS at-
tacks [6], [7]. We further extend their study on CDNs and
analyze the impact of the HPACK mechanism, e.g., Huffman
encoding and :path header field, on the amplification ratio.

Meanwhile, botnets have historically been used to launch
DDoS attacks [1], [43], [51]. Since the emergence of IoT
devices, the costs required for these attacks have been de-
creasing, whereas traffic generated by these attacks has been
increasing [2], [38]. Although attacks from botnets can be

mitigated by IP blocking, the HTTP DoS attacks described
in this paper are initiated from the CDN itself, making the
attacks stealthier and more difficult to detect. Even worse, a
CDN-powered website cannot apply IP blocking to mitigate
the attacks, because blocking CDN IPs will make the website
totally inaccessible for all clients.

Issues on IP Assignment Strategy. The IP assignment, which
concerns how a network service assigns IP addresses, of a
DHCP server is vulnerable to DHCP starvation attacks [44].
Borgolte et al. has revealed the IP use-after-free vulnerability
in the cloud, which can be exploited by attackers to deceive
domain-based certificate issuance [9]. In CDN, the egress IP
assignment, which is related to how a CDN assigns an egress
IP to forward requests to an origin, was also studied by Jin et
al. [34], and they observed the same results that we did.

VIII. CONCLUSIONS

The CDN has become an indispensable part of the Internet,
providing, among other benefits, anti-DoS services for its
CDN-powered websites. However, through the exploitation of
its architectural, implementation, or operational weaknesses,
the CDN itself can also be leveraged to break the CDN DoS
protection.

By revealing three relevant threats and presenting real-
world measurements across six CDNs, this paper reveals the
flawed trade-offs made by CDN vendors between security
and usability. We report that, because of protocol or imple-
mentation weaknesses, full-featured HTTP forwarding support
in CDNs can be abused to launch an efficient DoS attack
against website origins. We envision our work being able to
urge CDNs to raise their security standards, and inspire more
researchers to explore CDN-related security.
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