
Composition Kills:
A Case Study of Email Sender Authentication

Jianjun Chen∗ Vern Paxson†∗ Jian Jiang‡

∗
International Computer Science Institute

†
University of California, Berkeley

‡
Shape Security

Abstract
Component-based software design is a primary engineering
approach for building modern software systems. This pro-
gramming paradigm, however, creates security concerns due
to the potential for inconsistent interpretations of messages be-
tween different components. In this paper, we leverage such
inconsistencies to identify vulnerabilities in email systems.
We identify a range of techniques to induce inconsistencies
among different components across email servers and clients.
We show that these inconsistencies can enable attackers to
bypass email authentication to impersonate arbitrary senders,
and forge DKIM-signed emails with a legitimate site’s signa-
ture. Using a combination of manual analysis and black-box
testing, we discovered 18 types of evasion exploits and tested
them against 10 popular email providers and 19 email clients—
all of which proved vulnerable to various attacks. Absent
knowledge of our attacks, for many of them even a consci-
entious security professional using a state-of-the-art email
provider service like Gmail cannot with confidence readily
determine, when receiving an email, whether it is forged.

1 Introduction
Component-based software design [1] has been widely
adopted as a way to manage complexity and improve reusabil-
ity. The approach divides complex systems into smaller mod-
ules that can be independently created and reused in different
systems. One then combines these components together to
achieve desired functionality. Modern software systems are
commonly built using components made by different devel-
opers who work independently.

While having wide-ranging benefits, the security research
community has recognized that this practice also introduces
security concerns. In particular, when faced with crafted ad-
versarial inputs, different components can have inconsistent
interpretations when operating on the input in sequence. At-
tackers can exploit such inconsistencies to bypass security
policies and subvert the system’s operation.

In this paper, we provide a case study of such composition
issues in the context of email (SMTP) sender authentication.
SMTP’s original design lacked mechanisms to ensure the in-
tegrity of the purported sender (and message contents) of an

email. To combat email spoofing, modern email servers em-
ploy several SMTP extensions—SPF, DKIM, and DMARC—
to authenticate the sender’s purported identity, as the basis
for displaying in email clients assurances of validity to users
when they read messages.

Figure 1: A spoofing example that impersonates
facebook.com. Gmail shows that this email is signed
by facebook.com.

We show that the compositions of different software com-
ponents to construct these validity assurances have wide-
ranging vulnerabilities enabling attackers to undermine the
decision-making process. Figure 1 illustrates one of our at-
tacks1 impersonating facebook.com on Gmail. The Gmail
user sees apparent assurances that the sender was indeed
security@facebook.com when in fact it was not. Unless
otherwise noted, all of the attacks we present in this paper
manifest similarly: the reader who checks an email for valid-
ity receives an apparent-but-incorrect assurance when using a
vulnerable email system.

We organize the attacks into three classes. The first class
(“intra-server”) exploits inconsistencies between different
components inside a single email server, making the email
server generate “pass” authentication results for a spoofed
email. The second class (“UI-mismatch”) exploits inconsis-
tencies between mail servers and the mail clients used to read
email, such that the server and the client authenticate/dis-
play different email addresses. The third class (“ambiguous-
replay”) replays messages partially protected by DKIM signa-

1 The A3 attack, discussed in Section 4.2.



tures, employing additions to yield messages with deceptive
contents seemingly signed as authentic by a legitimate site.

We evaluated 10 popular email providers and 19 email
clients using a combination of manual analysis and black-
box testing. We found 18 types of exploits: 6 of the email
providers were affected by intra-server attacks, and all proved
vulnerable to UI-mismatch and ambiguous-replay attacks.

2 Background
Simple Mail Transfer Protocol (SMTP) provides an Internet
standard for mail transmission [2]. Figure 2 shows the three
main steps to deliver an email message. Alice’s email is first
transmitted to her service provider via her mail user agent
(MUA). The sending service then sends it to Bob’s service
provider using SMTP. The message is then delivered to Bob’s
MUA via IMAP (Internet Message Access Protocol) or POP
(Post Office Protocol).
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Figure 2: Email transmission from Alice to Bob

HELO a.com
MAIL FROM: <sender@a.com>
RCTP TO: <receiver@b.com>

From: <alice@a.com>
To: <bob@b.com>
Subject: Hello from Alice

Hi Bob,

I’m Alice…

SMTP envelope

Message header

Message body

Figure 3: An example of an SMTP message sent from a.com
to b.com.

2.1 SMTP lacks authentication
Figure 3 shows the elements of an SMTP message sent from
a.com to b.com. SMTP’s original specification lacked mech-
anisms to authenticate the sender’s identity, enabling any
Internet host to impersonate another’s identity by sending
spoofed emails. In practice, attackers usually exploit SMTP
by running their own email servers or clients.

SMTP’s design includes multiple “identities” when han-
dling messages. Both the MAIL FROM and From headers
identify the email sender, but they have different meanings
in an SMTP conversation. The first represents the user who
transmitted the message, and is usually not displayed to the
recipient. The second represents the user who composed the
message, and is visible to the recipient.

In addition, SMTP introduces multiple other sender identi-
ties, such as the HELO command, Sender and Resent-From
headers. Nothing in the design enforces consistencies among
these. Thus, the design poses a basic question for any authen-
tication mechanism: which identity to authenticate?

2.2 Preventing spoofing with SPF/DKIM/DMARC
To combat email forgery, various email authentication mech-
anisms have been developed, including SPF [3], DKIM [4],
DMARC [5], BIMI [6], and ARC [7]. Our study focuses on
the first three mechanisms, as BIMI and ARC haven’t been
widely adopted yet; we discuss BIMI and ARC in Section 9.

SPF. Sender Policy Framework (SPF) allows a domain
owner to publish DNS records to specify which servers are
allowed to send emails for the domain. A mail server receiv-
ing a message first queries any domain present in the MAIL
FROM and—recommended, but not required—HELO com-
mands, to obtain the SPF policy, and then checks whether the
sender’s IP address matches the policy. If either HELO or
MAIL FROM check fails, the mail server enforces the policy
specified by domain owner (e.g., hard fail, soft fail) to reject
the message.

One major problem of SPF is incompatibility with mail
forwarders. When an email is forwarded, SPF checks can fail
because SPF components authenticate the forwarding server,
rather than the original sending server.

DKIM. DomainKeys Identified Mail (DKIM) uses cryp-
tography to authenticate senders and protect email integrity.
The general idea behind DKIM is to let senders sign parts of
messages so that receivers can validate them. When sending a
message, the sending mail server generates a DKIM-Signature
header using its private key and attaches it to the message.
When the destination server receives the email, it queries the
domain in the d= field of the DKIM-Signature header to obtain
the signer’s public key, and verifies the DKIM signature’s
validity.

DKIM -Signature: v=1; a=rsa-sha256; c=relaxed/
relaxed; d=example.com; s=selector; h=
From:To:Subject; l=200; bh=I8iwjsTG/
djENwF0HjjQSgUtWKv5izitR9+mDu1ambA=; b=
HA1a66oMfyVbQwZLd3Dkm3ZDfomVU1FgMF ...

The above shows an example of a DKIM-Signature header.
The important tags for our work include:

• d represents the signer’s domain.
• s stands for selector, which permits multiple

keys under the “d=” domain for fine-grained
signatory control. The tag is used to obtain
the public key by querying “s._domainkey.d”
(selector._domainkey.example.com here).

• h represents the list of headers covered by the signature.
• l is an optional tag giving the length of the message

body covered by the signature.

Unfortunately, neither SPF nor DKIM provides a complete
solution for preventing email spoofing. SPF authenticates the
HELO/MAIL FROM identifier and DKIM authenticates the d=
field in DKIM-signature header: neither of them authenticates
the From header displayed to the end-user, which means that
even if an email passes SPF and DKIM validation, its From
address can still be forged.
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Figure 4: Email authentication flow and three types of attackers.

DMARC. Domain-based Message Authentication, Report-
ing & Conformance (DMARC) is designed to fix this final
trust problem by building on SPF and DKIM. When receiving
a message, the receiving mail server queries the domain in
the From header to obtain its DMARC policy, which specifies
what the receiver should do with the incoming email. The
receiving server performs an identifier alignment test to check
whether the domain in the From header matches the domain
name verified by SPF or DKIM. The alignment test has two
modes: strict and relaxed. In strict mode, the From header do-
main needs to exactly match the SPF or DKIM-authenticated
identifier. In relaxed mode (default mode), it only need to
have the same registered domain [8]. If either SPF or DKIM
indicates a positive result, and the From domain passes the
alignment test, the email passes DMARC authentication. This
design provides more robustness, for example, for forwarded
emails: SPF may fail, but DKIM will survive. If both fail, the
server will enforce the DMARC policy specified by the do-
main owners, such as rejecting the email and sending failure
reports.

Combining these three mechanisms, an email system en-
sures that the address in the From header cannot be forged,
and prevents email forgery.

2.3 Email processing flow
Figure 4 shows the main components in the email processing
flow. An email sent by a Sending Server goes through two
phases before reaching the end-user recipient: authentica-
tion by the Receiving Server, and display by the mail user
agent (MUA). In the first phase, the Receiving Server verifies
whether the email was indeed sent by the purported address,
as outlined in the previous section. If the email passes the
DMARC verification, it enters the user’s inbox.

In the second phase, the MUA (e.g., local mail clients and
web interfaces) parses the authenticated email and displays
the message to the end-user recipient, including, potentially,
an attestation of the sender’s identity. Although authenticated
emails include different sender identities in their headers—
such as From headers, MAIL FROM (aka Return-Path) and
DKIM-Signature headers, usually the MUA only displays the
From header as the message sender. Thus, the From header
provides the key identity relevant for gaining the user’s trust,
and as such merits particular protection.

3 Composition challenges in email authentica-
tion

We now turn to an analysis of how the composition of different
processing components in the email delivery and presentation
chain can lead to an array of vulnerabilities that undermine
sender authentication.

3.1 Threat model
We consider three types of spoofing attackers: forgery attack-
ers, replay attackers, and attackers who have accounts on
legitimate email services.

A forgery attacker can send arbitrary emails to vic-
tims (victim@victim.com) directly from their mail server
(attack.com). The attacker spoofs the email’s sender
in the From header to a legitimate website’s address
(admin@legitimate.com), which—nominally—email au-
thentication mechanisms should prevent.

Replay attackers possess emails with valid DKIM signa-
tures signed by a legitimate website domain. These attackers
exploit modifications to email headers, and potentially the
email body, that will not break DKIM signatures. These
attackers can obtain such DKIM-signed emails from, for ex-
ample, advertisement emails, registration emails, or public
mailing lists.

Malicious users of legitimate email providers exploit the
failure of some email providers to perform sufficient valida-
tion of emails received from local MUAs. These attackers can
send emails with spoofed From headers. The exploited email
providers may automatically attach DKIM signatures to their
outgoing emails, enabling the attackers to impersonate other
users of the email provider.

In this work we assume that 1) the targeted legitimate sites
configure SPF/DKIM/DMARC mechanisms correctly, and
2) the target email services reject emails that fail DMARC
authentication. In such a deployment environment, an email
authentication system should prevent spoofed email from
ever passing the authentication tests, ensuring that end-users
always see authenticated email sender addresses.

Security requirement. To achieve this goal, an email sys-
tem should provide the following basic security requirement:
The end-user Bob who uses email client C to receive an email
from receiving server R can determine that the message is



indeed from user Alice of sending server S, if and only if:
(1) The From header of the email that S sends matches the
authenticated username (other users of S cannot spoof Alice’s
address); (2) SPF/DKIM/DMARC components in R can ob-
tain S’s DNS correct policy; (3) SPF/DKIM and DMARC
components in R consistently authenticate the same identifier;
(4) the identifier that R authenticates is consistent with the
identifier that C shows to Bob.

Challenges in preserving the requirement. This require-
ment, although intuitive, implies a set of semantic binding
relations that every component in the email processing chain
must respect. Doing so turns out to pose considerable chal-
lenges, particularly for decentralized systems with different
components built by different developers. These include:

1) The difficulty of coordinating across components. Al-
though standards exist to ensure that different components be-
have in predictable ways, standards documents often provide
vague implicit descriptions open to different interpretations.
For example, when DMARC leverages SPF to prevent email
spoofing, the DMARC component might assume that the SPF
component always authenticates the MAIL FROM identifier
if the MAIL FROM address is not empty; but SPF does not
provide this guarantee. The SPF component might forward
HELO authentication results and leave to DMARC to itself
check which identity is verified. As a consequence, DMARC
and SPF components authenticate different identifiers, leading
to email authentication bypass (per Section 4.1).

2) Tensions with the robust principle. Postel’s Law encour-
ages implementations to be permissive in how they process
malformed inputs. Although doing can significantly facili-
tate connectivity between trusted parties, in an adversarial
context it can also introduce exploitable ambiguities. As we
show in Section 5.1, different preferences on tolerating mal-
formed From headers between mail servers and email clients
can lead to numerous email spoofing attacks.

3) The danger of feature composition. Implementations
can vary in supporting various features, such as protocol
extensions or older versions, or customizable functionality.
Such diverse behavior appears harmless when examining each
component independently, but can in combination introduce
security problems. Attackers can chain different feature gad-
gets across components to perform unexpected computation.
As we show in Section 5, different combinations of email
providers and clients can suffer from vulnerabilities simply
because they differ in their support for various features.

3.2 Testing methodology
To investigate how real-world systems handle these chal-
lenges, we conducted a security analysis of popular email
providers and MUAs.

Selecting email providers and clients. We chose to test
email providers that 1) verify SPF/DKIM/DMARC for in-
coming email, 2) allow us to register accounts for testing,
and 3) reflect SPF/DKIM/DMARC authentication results in

the email headers. For MUAs, we gathered a list of popular
local email clients2 that covers today’s major platforms. We
also tested the web interfaces of selected email providers by
using their third-party email importation functions. In total,
we tested 10 email providers and 19 MUAs, including 9 local
email clients and 10 web interfaces, as shown in Table 2.

Black-box testing. The problems we examine are rooted in
the inconsistent behaviors of different programs. Our analysis
followed a behavior-oriented methodology that dissects an
email authentication workflow, dividing it into four steps.

First, we studied SMTP and email specifications (both core
protocols and extensions), extracting authentication-related
behavior, focusing on the lexical, syntax and semantic rules
for different identities. Second, we generated ambiguous test
cases by “walking” through the extracted rules to examine
each of their choice points, in a manner analogous to that em-
ployed in prior work for finding IDS evasion threats [9]. Third,
we leveraged the generated cases to test different components
for inconsistent behaviors in parsing and interpreting ambigu-
ous messages. Finally, we manually analyzed the identified
behaviors to verify the likelihood of success in practice.

We define an email authentication mechanism as broken
when the following both hold: 1) the email server erroneously
verifies the test email’s sender as not spoofed, for example,
DMARC authentication produces a “pass” result; 2) the MUA
erroneously indicates that the sender address is from a (le-
gitimate) target domain rather than the attacker’s sending
domain.

To extend our results to closed-source proprietary systems,
we first examined popular open-source SMTP implementa-
tions,3 to understand their possible interactions and find po-
tential ambiguities. Guided by these results, we then probed
the possible internal logic of black-box systems, testing any
discovered ambiguities to assess whether they reflect similar
vulnerabilities.

Leveraging this approach, we found three categories of at-
tacks leading to “broken” authentication results: intra-server,
UI-mismatch, and ambiguous-replay attacks. Intra-server
attacks exploit ambiguities between an email server’s dif-
ferent internal components. UI-mismatch attacks exploit in-
consistent interpretations between mail servers and MUAs.
Ambiguous-replay attacks produce misleading DKIM-signed
emails that validate as signed by a (legitimate) target domain.
Tables 1 and 2 below summarize the susceptibility of the
different email providers and MUA clients that we studied.
While 4 of the 10 email providers resist intra-server attacks,
all have vulnerabilities to UI-mismatch and ambiguous-replay
attacks.

We now detail how we explored the three attack categories,
illustrated with representative cases.

2Mainly from https://emailclientmarketshare.com/.
3Postfix, Python-postfix-policyd-spf, OpenDKIM, and OpenDMARC.

https://emailclientmarketshare.com/


4 Intra-server Attacks
Intra-server attacks exploit inconsistencies between different
internal components of a single implementation. Per Figure 4
above, sender authentication can include four internal compo-
nents: SPF, DKIM, DMARC, and DNS. We discovered three
techniques to exploit their inconsistencies: (1) HELO/MAIL
FROM confusion (A1,A2); (2) ambiguous domains (A3); and
(3) authentication results injection (A4,A5).

Table 1: Email providers vulnerable to Intra-server attacks.

Email Providers Ambiguity b/w
SPF&DMARC

Ambiguity b/w
DKIM&DNS

Ambiguity b/w
DKIM&DMARC

Gmail.com X(A3)
iCloud.com X(A5) X(A4)
Outlook.com
Yahoo.com
Naver.com X(A4)
Fastmail.com
Zoho.com X(A5) X(A4)
Tutanota.com X(A2,A5) X(A4)
Protonmail.com X(A5) X(A4)
Mail.ru

“3”: vulnerable to specific attack(s) due to internal inconsistencies.

4.1 HELO/MAIL FROM confusion
SMTP employs two different identifiers—HELO and MAIL
FROM—to represent the email sender who transmits a mes-
sage. The SPF standard (RFC 7208) states that SPF verifiers
should check both; checking MAIL FROM is mandatory, and
HELO is recommended. The DMARC standard (RFC 7489)
states that DMARC verifiers should use the MAIL FROM
identity to perform the alignment test to validate the identity
in the From header. If the MAIL FROM address is empty, the
verifier should use the HELO identity.

This design introduces the possibility that different compo-
nents might authenticate different identifiers. When the SPF
component cannot verify the MAIL FROM address, but can
verify the HELO identifier, the DMARC component might
still use the MAIL FROM identifier for its alignment test. We
developed two techniques to exploit these possibilities:

1) Non-existent subdomains (A1). The first technique crafts
a MAIL FROM domain as a non-existent subdomain of a le-
gitimate domain, as shown in Figure 5a. SPF components can-
not verify the MAIL FROM address because the non-existent
domain doesn’t have any SPF policy. Some SPF implemen-
tations (e.g., Python-postfix-policyd-spf) will then only verify
the HELO identifier, forwarding a “pass” result because the
HELO domain is under the attacker’s control. Some DMARC
implementations (e.g., OpenDMARC), however, still use the
MAIL FROM domain to perform the alignment test with the
From header, because the MAIL FROM address is not empty.
Doing so subverts the DMARC authentication because both
the SPF check and the DMARC alignment test show positive
results.

2) “Empty” MAIL FROM addresses (A2). The second tech-
nique exploits differences in how components treat an empty
MAIL FROM address, per Figure 5b. (Note that in the exam-
ple, the left parenthesis is deliberately left unclosed.) Some

SPF implementations treat “(any@legitimate.com” as an
empty MAIL FROM address, and thus forward the results
of checking HELO to the DMARC component, because the
string in the parentheses can be parsed as a comment ac-
cording to RFC 5322 [10]. Some DMARC implementations,
however, may take it as a normal non-empty address, and use
its domain for the alignment test.

4.2 Ambiguous domains
Inconsistencies can also arise between authentication compo-
nents and DNS components: what the authentication compo-
nent verifies differs from what the DNS component queries.
An attacker can craft ambiguous domains to make the au-
thentication component believe that it’s verifying the legiti-
mate domain, but the DNS component actually queries the
attacker’s domain to obtain policy records. The authentication
component generates “pass” authentication results because
the attacker controls the policy retrieved via DNS.

NUL ambiguity (A3). One way to craft such domains uses
the NUL (“\x00”) character, which terminate strings in some
languages (e.g., C) but not in others (e.g., Perl or PHP). For ex-
ample, we can fool Gmail.com using this technique. Gmail’s
DKIM and DNS components differ in interpreting NULs in
domain name, which we exploited for our example in the
Introduction (Figure 1).

Per Figure 5c, first the attacker constructs a fake email with
arbitrary email content. They then sign the message with
their own private DKIM key to generate the DKIM-Signature
header, which specifies the “d=” tag as legitimate.com and
the ‘s=’ tag as “attacker.com.\x00.any”.

When the Gmail server receives the email, its DKIM
component queries the domain s._domainkey.d, i.e.,
“attack.com.\x00.any._domainkey.legitimate.com”,
to obtain the public key. But when it invokes to resolve this
domain, the DNS component parses the NUL character as
a string terminator and instead obtains the public key from
attack.com. The DKIM component thus uses the attacker’s
public key to verify the forged message, erroneously
believing that the legitimate domain correctly signed the
message. The spoofed message also passes Gmail’s DMARC
verification because the “d=” domain is identical to the From
header domain.

4.3 Authentication results injection
Another vector for potential ambiguity arises from how re-
sults are communicated from one component to another. The
presence of meta-characters in the communication introduces
the possibility of “results injection” analogous to SQL or
command injection.

Authentication result header syntax. This threat depends
on the details of how SPF and DKIM components forward
their authentication results to DMARC components to enable
it to perform its alignment check on the value of the From
header. RFC 8601 defines the Authentication-Results header
to provide a common framework for communicating these



HELO attack.com
MAIL FROM: <any@notexist.legitimate.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(a) HELO/MAIL FROM confusion.

HELO attack.com
MAIL FROM: <(any@legitimate.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(b) “Empty” MAIL FROM address.

HELO attack.com
MAIL FROM: <any@attack.com>
RCTP TO: <victim@victim.com>

DKIM-Signature: …;d=legitimate.com;
    s=attack.com.\x00.any; …
From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(c) NUL ambiguity.

HELO attack.com
MAIL FROM: <any@attack.com>
RCTP TO: <victim@victim.com>

DKIM-Signature: …; s=selector;
    d=legitimate.com(.attack.com;…
From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(d) DKIM authentication results injection.

HELO attack.com
MAIL FROM: <any@legitimate.com(.attack.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(e) SPF authentication results injection #1.

HELO attack.com
MAIL FROM: <any@legitimate.com’@a.attack.com>
RCTP TO: <victim@victim.com>

From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

(f) SPF authentication results injection #2.

Figure 5: Different intra-server attacks to make SPF/DKIM verify attack.com while DMARC instead uses legitimate.com.

authentication results, for example:

Authentication -Results: example.com; spf=pass
smtp.mailfrom=sender@sender.com; dkim=
pass (1024-bit key) reason="signature ok"
header.d=sender.com;

Here, “spf=pass” and “dkim=pass” indicate that the mes-
sage passed both SPF and DKIM verification for the mail
server for example.com. “smtp.mailfrom” represents the
domain verified by the SPF component, and “header.d” rep-
resents the domain verified by the DKIM component. The text
in parentheses reflect a comment. The DMARC component
parses this header to extract the SPF/DKIM authentication re-
sults and check whether the tested value align with the domain
in the From header.

Authentication results injection attacks. A vulnerability
arises because an attacker can control the domain name em-
bedded in the “header.d” and “smtp.mailfrom” fields. The
flexibility of domain-name syntax provides fertile ground for
attackers to construct malformed domain names. Although
many applications require domain names to follow specific
syntax rules—for example, domain name registrars only al-
low users to register domain names under the LDH rules (only
letters, digits, hyphens)—the DNS protocol does not impose
any restrictions on the characters in a domain label.

In particular, an attacker can introduce malformed domains
that include meta-characters, for example “a.com(.b.com”.
SPF and DKIM components may treat those characters as
data, while DMARC components may parse them as control
information. We found two types of injection attacks based
on such malformed domains.

1) DKIM authentication results injection (A4). Per
Figure 5d, attackers can generate DKIM-Signature
headers using their own private keys, with “d=” val-

ues that embed a literal open parenthesis, such as
“legitimate.com(.attacker.com”.

When receiving this message, the DKIM compo-
nent queries “selector._domainkey.legitimate.com(.
attacker.com”—a domain under the attacker’s control—to
obtain the DKIM public key to verify the message. The
DKIM component then generates:

Authentication -results: victim.com; dkim=pass
(1024-bit key) header.d=legitimate.com(.
attacker.com;

When receiving the Authentication-Results header, the
DMARC component parses “header.d” as legitimate.com,
because it parses the content after the “(” as a comment. Since
the “header.d” value matches the From header domain, the
attacker’s message passes DMARC verification.

Along with “(”, double (") and single (’) quote characters
can also work for this technique. Because RFC 5322 defines
characters within the quotes as atoms, DMARC modules may
parse the content after the quote as part of the atom.

2) SPF authentication results injection (A5). Similarly, an
attacker can craft malformed addresses in MAIL FROM com-
mands to bypass SPF and DMARC verification, as shown
in Figure 5e. THe SPF component verifies the attacker-
controlled domain “legitimate.com(.attacker.com”,
while the DMARC module takes the first half of the domain
for the alignment test.

We found that some mail servers perform a degree of val-
idation on the MAIL FROM address’s syntax, and reject the
above address. But attackers can bypass their validation as
shown in Figure 5f. Here, the mail server takes the second
“@” as the delimiter, and recognizes it as a valid email address,
while the SPF component takes the first “@” as the delimiter,



and thus queries “legitimate.com’@a.attack.com”—the
attacker’s domain—to verify the sending IP address. When
the DMARC component parses the authentication results, it
takes the content after the single quote as a quoted string, and
uses legitimate.com for the alignment test.

5 UI-mismatch Attacks
As shown in Figure 4, email servers and mail user agents
(MUAs) process messages separately. UI-mismatch attacks
exploit the inconsistencies between how an email server val-
idates a message versus how the MUA ultimately indicates
its validity. Generally, we can divide From header-related
processing into two phases: 1) parsing a MIME message to
extract the From header; 2) parsing the From header to extract
a corresponding domain or email address. We likewise di-
vide our UI-mismatch attacks into two categories: ambiguous
From headers and ambiguous email addresses.
5.1 Ambiguous From headers
We devised three techniques to exploit ambiguous From head-
ers: 1) multiple From headers; 2) space-surrounded From
headers; 3) From alternative headers.

1) Multiple From headers (A6). RFC 5322 states that an
email message must have exactly one From header, which
implies that email messages with multiple From headers are
invalid and should be rejected by receiving services.

We find that 19 out of 29 tested implementations (including
5 email providers and 14 MUAs) do not in fact follow the
specification and reject such messages. All 5 email providers
use the first From header for DMARC checking. iCloud.com
(Web) and Mail (Windows) display the last From header; Mail
(MacOS) shows both headers; and the other 11 MUAs display
the first From header.

Thus, attackers can mislead the presentation to the user of
email sender validity by using a mail server that (1) accepts
multiple From headers, (2) with a different preference than the
user’s email client. Figure 6a shows such an example. iCloud
(Server) uses the first From header for DMARC verification,
but iCloud (Web) displays the second one to the user.

2) Space-surrounded From headers (A7). RFC 5322 defines
an email header as a field name, a colon, and a field body
(value). If an attacker violates this syntax structure by in-
serting whitespace before or after the header name, different
implementations handle the ill-formed header differently.

We identify three such edge cases: a) a space-preceded
From header as the first header; b) a space-succeeded From
header; c) a folding-space-succeeded From header. The email
standards implicitly disallow the first two cases, and explic-
itly disallow the last case. In practice, none of our tested
implementations fully comply with the specification. Pro-
tonmail.com (Server) rejects the first and second case, Ya-
hoo.com (Server) rejects the third case. Others recognize the
space-surrounded From header as a valid From header, take it
as an unknown header or parse the whitespace as the delimiter
between email headers and body.

Whitespaces open new opportunities for multiple From
ambiguities. First, use of whitespace can bypass the email
server’s validation. For example, Mail.ru (Server) rejects
email with multiple From headers, but an attacker can bypass
it with a folding-space-succeeded From header, as shown in
Figure 6b. Second, inconsistent interpretation of whitespace
can lead to ambiguities. Mail.ru (Server)’s DMARC compo-
nent recognizes the folding-space-succeeded From header and
authenticates attack.com, but Outlook (Windows) takes it
as an unknown header and presents admin@legitimate.com
as the validated From header.

Sometimes we can even fool the email servers and MUAs
that use the same header parsing and processing, by leverag-
ing special forwarding behaviors of the email servers. Fig-
ure 6c shows an example. Both Fastmail.com (Server) and
Fastmail.com (Web) don’t recognize the space-succeeded
From header, but Fastmail.com (Server) normalizes the space-
succeeded From header, removing the space when forwarding
the message. The forwarding behavior causes Fastmail.com
(Web) to recognize a different From header.

3) From alternative headers (A8). RFC 5322 includes mul-
tiple headers that identify different email sender roles. The
From header represents the user who writes the message, the
Sender header the user who submits it, and the Resent-From
header the user who forwards the message.

Normally, only the From header plays a role in email au-
thentication and display. However, if an attacker crafts an
email with no From header or an unrecognized From header,
some implementations will use alternative headers to identify
the message sender. We found 7 out of 19 MUAs have such
behavior. Gmail.com (Web) shows the Resent-From header
value when the From header is missing; the other 6 display the
Sender header value in the From field. All of the email servers
we tested only use the From header for DMARC verification.
If From header is not found, they don’t perform DMARC
authentication, or generate “none” results.

The interplay between From header and its alternative head-
ers introduces another source of ambiguity. As shown in
Figure 6d, Naver.com (Server) recognizes a folding-space-
succeeded From header and verifies attack.com, but Outlook
(Windows) doesn’t recognize it and shows the (unverified)
Sender header value in the From field.

Attackers can also combine different techniques to chain
multiple features to bypass strict security validation. Figure 6f
shows an example. Gmail.com (Server) has strict message
validation: it rejects messages with multiple From headers,
and adds a new From header with the MAIL FROM value if
the From header is absent. But an attacker can bypass this
validation by combining a space-preceded From header as the
first header, a Resent-From header as an alternative header,
and empty MAIL FROM value. Gmail.com (Server) recognizes
the first space-preceded From header and uses it to perform
DMARC checks. It then inserts an Authentication-results
header before the message, which causes the original From
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   From: <any@attack.com>
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Authentication-results: …
   From: <any@attack.com>
From:
Resent-From: <admin@legitimate.com>
To: <victim@victim.com>

(f) Combine multiple techniques to bypass Gmail validation.

Figure 6: Different cases of inconsistent interpretation of From header between email servers and MUAs.

header to be parsed as a “folded” line, i.e., a continuation of
the Authentication-results header. It then adds a new From
header with the empty MAIL FROM value and forwards the
message to the email client. Gmail.com (Web) ignores the
empty From header, and displays the Resent-From header
value as the message sender.

From: “a@a.com” <@b.com, @c.com:d@d.com> (e@e.com)

Route portionDisplay name Real address Comments

Figure 7: An example of valid From header.

5.2 Ambiguous email addresses
Even if an email server and client extract the same From
header from a MIME message, extracting a consistent email
address from that From header poses another challenge due
to the complex syntax of From headers. In this section we
develop a set of attacks that exploit these complexities.

Complex From header syntax. Figure 7 shows a valid
From header with a single mailbox address, which consists of
four elements.

Display name is an optional field that identifies the sender’s
name. As this field is not protected by SPF, DKIM or
DMARC, many known phishing attacks use the display name
to deceive victims. (In this paper, however, we aim to spoof
the real address, rather than the display name.)

Real address indicates the real sender. It consists of a local-
part, “@”, and a domain. The local part can be a string with or

without quotes.
Route portion is an obsolete feature originally defined in

RFC 822 to indicate the delivery path that the message should
follow. Its syntax is a comma-separated list of domain names,
each preceded by “@”, with the list terminated by a colon.
RFC 5322 prohibits generating this obsolete field, but recipi-
ents still must accept it (and ignore the routing part).

Comments is a string of characters enclosed in parentheses
that provide some human-readable information. Comments
can be freely inserted in many places of a From header,
such as before or after the address, or inside the real
address. For example, RFC 5322 Appendix A.5 states that
“From: Pete(A nice \) chap) <pete(his account)
@silly.test(his host)>” is a valid address.

Multiple address lists. RFC 5322 specifies that the From
header value can be a mailbox address list, which indicates
that the message has multiple authors. This means that ad-
dresses such as that one in Figure 7 can be repeated multiple
times, separated by commas. The RFC also states that if the
From header has multiple addresses, a Sender header with a
single mailbox address must appear in the message.

Quoted-pair. RFC 5322 reserves some characters for spe-
cial interpretation, such as commas and quotes. To permit the
use of these characters as uninterpreted data, email senders
can use ‘\’ to escape them.

Encoding. Originally SMTP only allowed US-ASCII char-
acters in email headers. To support non-ASCII characters,
RFC 2047 defined two encoding approaches: Base64 en-
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(b) Differences in parsing Base64-encoded address.
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(f) Display name and real address parsing ambiguity.

Figure 8: Different cases of inconsistent interpretations of email addresses between email servers and MUAs.

coding and quoted-printable encoding. Its syntax is like
this: =?charset?encoding?encoded-text?=, in which the
“charset” field specifies the character set of the unencoded
text;“encoding” value should be “B” or “Q”, representing the
encoding algorithm; “encoded-text” is the text encoded by
the algorithm. For example,“From: bob<b@b.com>” can be
encoded as “From: =?utf-8?B?Ym9i?=<b@b.com>” by the
Base64 encoding approach.

Attacks leveraging complex From headers. We find that
implementations vary in parsing and interpreting From head-
ers. Here we show five attacks that exploit these inconsisten-
cies, as shown in Figure 8.

1) Multiple email addresses (A9). We observe 5 distinct be-
haviors in processing From headers listing multiple addresses.
Gmail.com (Server) and Mail.ru (Server) reject the messages;
Tutanota.com (Web) displays the last address; Zoho.com
(Server) and iCloud.com (Web) don’t verify or display any
address; 2 mail servers and 4 MUAs verify or display all of
the addresses; all the others take the first address.

Multiple email addresses enable two new kinds of ambigu-
ities. First, when the mail server rewrites addresses in From
headers (for example, Protonmail.com (Server) inserts the
Sender address into the From header), the mail server may
recognize a From header value that differs from the email ad-
dress that the client displays, as shown in Figure 6e. Second,
if the mail server forwards the From header as-is, different
interpretations of multiple email addresses can directly lead to
authentication bypasses. In Figure 8a, Tutanota.com (Server)
only uses the first address for DMARC checking, while its
web interface only shows the second one.

2) Email address encoding (A10). Figure 8b shows an
example exploiting the differences in parsing encoded ad-
dresses. In our experiments, Yahoo.com (Server), Out-
look.com (Server), iCloud.com (Server), Fastmail (Server),
Zoho.com (Server) and Tutanota.com (Server) don’t recog-
nize the encoded address, and use attack.com for DMARC
testing; but Gmail.com (Web), Outlook.com (Web), Ya-

hoo.com (Web), Naver.com (Web), Mail (MacOS), Mail (Win-
dows) and Mail (iOS) support this encoding feature, and only
display the first address.

3) Route portion (A11). As shown in Figure 8c, Fast-
mail.com (Server) does not recognize the route portion,
and treats attack.com as a real address to use for
DMARC verification; while 10 MUAs, including Fast-
mail.com (Web), ignore the route portion, and only show
admin@legitimate.com.

4) Quoted-pairs (A12). Figure 8d shows an example aris-
ing from differences in supporting the quoted-pair feature.
Gmail.com (Server) and iCloud.com (Web) recognize the
second address; but Mail (Windows), iCloud (Server) and
12 other implementations only use the first one.

5) Parsing inconsistencies (A13). We also found inconsis-
tencies in recognizing the precedence of different delimiters.
Figure 8e shows an example. Mail.ru (Server) and Zoho.com
(Server) DMARC component believes that “<” has higher
priority, and authenticate attack.com; but Outlook (Win-
dows) and 8 other MUAs have a different preference, and
only display legitimate.com.

Differences in parsing display names and real addresses
provide another source of ambiguity. As shown in Fig-
ure 8f, Thunderbird (Linux), Mail.ru (Web), Gmail.com
(Server) and Mail.ru (Server) mistakenly validate or display
admin@legitimate.com as the real sender but Outlook.com
(Server), iCloud.com (Server), Protonmail.com (Server) and
9 other implementations recognize it as attack.com.

Broader issues. SPF, DKIM, and DMARC rely on domain
queries for sender authentication. When failing to obtain
the domain record, the mail service providers may decide
that the domain doesn’t deploy the corresponding security
mechanisms, and allow the message into the user’s inbox.
Leveraging this “fail-open” feature, an attacker can further
exploit inconsistencies between mail servers and MUAs to
bypass authentication. Here are three examples:

1) Invisible characters (B1). An attacker can by-



Table 2: Vulnerability of the tested email providers and MUAs to UI-mismatch attacks.

Servers
MUAs Web Windows MacOS Linux Android iOS

interface Mail Outlook Mail eM Client Thunderbird Gmail Outlook Mail Gmail
Gmail.com X X X X X
iCloud.com X X X

Outlook.com X X
Yahoo.com X X
Naver.com X X X X X X X X X X

Fastmail.com X X X X X
Zoho.com X X X X X

Tutanota.com X — — — — — — — — —
Protonmail.com X — — — — — — — — —

Mail.ru X X X X X X X X X
“3”: email server and MUA combination where we can expose an inconsistent interpretation.
“—”: email providers that don’t support third-party MUAs for our testing account.

pass Outlook.com authentication by appending invisible
characters to the target domain, for example, “From:
admin@legitimate.com\u2000”. The DMARC module in
Outlook.com (Server) treats legitimate.com\u2000” as a
new domain and doesn’t locate any policy for it, while its web
interface only shows legitimate.com.

2) Encoding (B2). When an attacker sends a From
header with Base64-encoded email address, e.g., “From:
base64encode(admin@legitimate.com)”, the DMARC
module of Yahoo.com (Server) authenticates the encoded
domain, but its web interface shows the decoded address.

3) From alternative headers (B3). Upon receiving a mes-
sage that has no From header but does have a Sender header,
Outlook.com (Server), Zoho.com (Server), and Tutanota.com
(Server) omit DMARC verification or generate “none” results
for the message. However, their web interfaces show the
Sender header value.

6 Ambiguous-replay Attacks

Attackers can also spoof emails with seemingly valid DKIM
signatures from legitimate domains, bypassing both DKIM
and DMARC authentication safeties to make forged emails
more deceptive.

DKIM uses digital, cryptographic approaches to prevent
tampering with signed content. However, two DKIM mecha-
nisms make signature spoofing possible. First, DKIM doesn’t
prevent replay attacks. A replay attacker who has an email
signed by a legitimate domain can resend it to other victims,
a known issue already noted in the DKIM standard. Second,
DKIM allows attackers to append additional email headers—
or even body contents, in some cases—to the original mes-
sage. Combining these two weaknesses, a replay attacker
can append malicious content without breaking the DKIM
signature, and further fool email clients to only display the at-
tacker’s content by exploiting inconsistencies between DKIM
processing and MUA presentations.

6.1 DKIM signature replay attacks
As mentioned in Section 2, DKIM signatures protect both
email headers and bodies. The latter is always signed. Signing
headers, however, is optional, and specified by the “h=” tag
of the DKIM-Signature header.

1) Header spoofing (A14 and A15). We found two tech-
niques to spoof email headers. First (A14), if the headers in
the “h=” tag are incomplete, a replay attacker can modify
those unprotected headers and send the result to other vic-
tims. RFC 6376 lists 19 headers which should be signed,
including From, Subject, To and Content-Type. Among them,
however, only the From header must be signed; the others are
recommended options. In real-world deployment, different
sites have various choices. For example, citibank.com only
signs “h=from:subject” headers; americanexpress.com
only signs “h=from;reply-to”; aa.com (American Air-
lines) only signs “h=from”. A replay attacker can modify
these unprotected fields in signed messages without invalidat-
ing DKIM signatures. Figure 9 shows a spoofing example
of exploiting American Airlines DKIM signatures. The at-
tacker can make Gmail.com render the original body as an
attachment, by setting the Content-Disposition header to be
“attachment;filename=ticket.jpg”.

Figure 9: An example of replaying an American Airlines
email to a Gmail.com recipient. The subject is fake and the
original body is rendered as an attachment.

Second (A15), while including all necessary headers in the
signature can prevent attackers from tampering them, a replay



attacker can still bypass the checks by using multiple headers,
per Section 5.1. An attacker can craft ambiguous emails by
adding a new header (e.g., Subject) to the signed mail, if
two parties in the email process chain parse and interpret the
extra header differently; for example, if the DKIM component
uses the original Subject header while the mail client uses the
crafted Subject header.

While RFC 6376 § 5.4.2 states DKIM components must
use the last header if a message has duplicate headers, we find
that DKIM components and email clients indeed sometimes
lack consistency in processing multiple headers. In our testing
experiments, all tested DKIM components conformed with
the rule—but 10 out of 19 MUAs prefer the first header.

DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt;
c=simple/relaxed; s=default;
d=service.discover.com;
h=From:Sender:To:Subject; l=200;
bh=z61ep91pq...; b=aPg+UnM+wYY7T784XRM+bQ...

From: Discover Card <discover@service.discover.com>
To: victim@victim.com
To: any@any.com
Message-ID: <1518338104553 @discoverfinancial.com>
Subject: Action required: Your account is suspended!
Subject: Your statement is available online
Content-Type: multipart/mixed; boundary=BAD
Content-Type: text/plain; charset=UTF-8

Dear customer,

Your bank statement is available online...
--BAD
Content-type: text/plain

Dear customer,

Your account is suspended...

Thanks,
--BAD--

Figure 10: An example of exploiting a discover.com DKIM
signature to a Gmail.com recipient.

2) Body spoofing (A16). Apart from spoofing the email
header, an attacker can also spoof the email body by exploit-
ing the optional “l=” tag in the DKIM-Signature header, which
represents the length of the email body included in the signa-
ture. This tag is intended for increasing signature robustness
when sending to mailing lists that modify email body content.
For example, Google Groups usually appends unsubscribe in-
formation at the end of each forwarded email. Such behavior
can break DKIM validations.

Use of “l=” allows a replaying attacker to append new ma-
licious contents to the original email body without breaking
the DKIM signature. In addition, if the Content-Type header
is not protected by the DKIM signature, the attacker can fur-
ther change the email MIME structure by redefining it so that
mail clients only display the attacker’s malicious content.

Figure 10 shows an example spoofing a discover.com
email to a Gmail.com recipient. The red part shows the newly
crafted content. As discover.com uses “l=” tag in its sig-
nature, and the Gmail server takes the last instance of dupli-

cate headers for DKIM verification, the crafted email passes
Gmail’s DKIM validation. When the Gmail web interface dis-
plays this message, it uses the MIME boundary defined by the
attacker and only shows the attacker’s content, because RFC
2046 § 5.1.1 specifies that any content before the boundary is
treated as preamble and not displayed by email clients.

We conducted a preliminary assessment of this problem
by collecting emails from wikileaks.org, IETF mailing
lists, and our personal emails. We find that many sites are
not aware of this attack. Among the 10 email providers
we tested, Zoho.com includes the vulnerable “l=” tag for
its outgoing messages. Popular sites such as baidu.com,
discover.com, akamai.com, manuscriptcentral.com,
badoo.com (Alexa 803), and blizzard.com (Alexa 1,066)
are also vulnerable to this technique.

6.2 Spoofing via an email service account
An attacker can also leverage access to an email service to
spoof misleading DKIM-signed emails. In this scenario, the
attacker has an account on a legitimate email service, but
uses a custom MUA to originate emails sent through the
service. Email providers will first authenticate the MUA
using the username/password provided in the AUTH command.
They will then check whether the From header in the message
matches the authenticated username. If so, the email provider
attaches its DKIM signature when forwarding the message.

The problem (A17) arises when an email provider does
not perform sufficient checks on the From header, enabling
an attacker to send a signed message with another user’s ad-
dress (e.g., administrator). As the message has the email
provider’s DKIM signature attached, it will pass the receiver’s
DKIM and DMARC validation.

Given the complexity of From header syntax, its validation
is difficult and error-prone. An attacker can use the techniques
described in Section 5, such as ambiguous From headers and
email addresses, to bypass the email provider’s validation.

Of the 8 email providers we tested,4 all except Outlook.com
are vulnerable to this attack. Fastmail.com (Server) accepts
arbitrary email addresses in the From header, even email
addresses from different domains. iCloud.com (Server),
Naver.com (Server) and Zoho.com (Server) accept multiple
From headers and only check if the first one matches with the
authenticated username. Yahoo.com (Server), iCloud.com
(Server) and Naver.com (Server) accept multiple addresses
and only check the first address. Gmail.com (Server),
Zoho.com (Server), mail.ru (Server) accept From headers
like “From:admin@a.com\,<user@a.com>” and only check
the second one. The message will pass the receiving server’s
DKIM and DMARC validation, while email clients may dis-
play the unverified (e.g., administrator) address, as pre-
sented in Section 5.

4 We omit Tutanota.com and Protonmail.com as they do not support
third-party MUAs for our testing account.



6.3 Replay attacks to subvert DKIM signatures
An attacker with an account on an email service can also
employ replay attacks to forge DKIM-signed emails even for
email providers that perform strict From header validation,
such as Outlook.com.

The spoofing attack (A18) proceeds in two steps. First, the
attacker uses their account to email themselves through the
email provider server. In the email, the attacker can create
deceptive content in the email body, Subject header and To
header, but not the From header given the email providers
strict validation. When the email provider sends the message,
it attaches its DKIM signature to the message.

Second, the attacker adds an extra From header with another
user’s address to the DKIM-signed message and resends it to a
victim. When the victim’s email server receives the message,
its DKIM component may verify the original From header,
and the message passes both DKIM and DMARC verification,
while the MUA may show the fake From header. The attacker
can induce such inconsistencies between DKIM components
and email clients by exploiting the techniques described in
Section 6.1 and Section 6.2.

7 Responsible Disclosure
We have reported all the vulnerabilities we discovered to both
the affected vendors and to CERT/CC, and have received pos-
itive feedback from all vendors except Microsoft and Yahoo.
Below we summarize their responses.

Gmail.com: fixed the A3 and A18 attacks immediately after
our report, and rewarded us with cash payments for the two
attacks separately. They were investigating other attacks in
our report.

Zoho.com: confirmed our report and have modified their
servers to mitigate these attacks. They informed us that they
already place some emails that potentially trigger the dis-
closed vulnerabilities into the receiving email users’ “spam”
folder, and that they monitor delivery metrics to determine
whether to later reject them outright. They gave us four re-
wards, corresponding to the intra-server attacks, A16 attack,
A18 attack and UI-mismatch attacks.

Protonmail.com: rewarded us for the intra-server attacks.
They were looking at other attacks in the paper.

Mail.ru: rewarded us for the A18 attack and engaged in
in-depth discussions with us about the specifics. For UI-
mismatch attacks, they suggested the defense of MUAs warn-
ing users of possible spoofing attempts without affecting
email delivery. They already provide authentication informa-
tion to MUAs via Authentication-Results (RFC 8601) headers.
As third-party MUAs are out of their control, they currently
don’t address spoofing attacks in third-party MUA interfaces.
In the future, they would consider blocking emails with am-
biguous addresses, but currently due not view doing so as
feasible, since they observe too many cases of actual, valid
messages with unusual headers.

Fastmail.com: told us that they generally don’t consider
email spoofing bugs for bug bounty purposes, but as our report
provided a more notable finding than most, they offered us a
cash reward in thanks.

Naver.com: confirmed our report and offered to include us
as special contributors.

eM Client: discussed the attacks and possible defense so-
lutions with us. They suggested that using a future IMAP
extension, instead of the Authentication-Results header, could
provie a more reliable way for email providers to report au-
thentication information to MUAs. They stated they were
assessing how to mitigate the issues we reported.

iCloud.com, Tutanota.com and Thunderbird: thanked
us for our report and stated they were actively fixing these
issues.

Microsoft: disregarded our report (which included our pa-
per and a video 5 demoing the A10 attack) because the threats
rely on social engineering, which they view as outside the
scope of security vulnerabilities.

Yahoo.com: misunderstood our report (which included our
paper and a video 6 demoing the attack in Figure 8b) as reflect-
ing DNS misconfiguration issues, which we have clarified,
but to date have received no further reply.

8 Discussion
The attacks we found share the high-level theme of inconsis-
tencies between software components. We summarize three
sources of inconsistencies that manifest in the overall picture.

First, the email protocols define multiple sender identi-
fiers, leaving room for misaligned interpretations in imple-
mentations. For example, HELO and MAIL FROM commands,
along with From, Sender, and Resent-From headers, represent
different sending roles with similar or redundant semantics.
While a strict specification can clarify and regulate protocol
fields with confusing semantics, problems often arise when
implementations lack a comprehensive understanding of the
specifications.

Second, text-based protocols with complex syntaxes can
lead to a variety of parsing inconsistencies. For example,
the From header defines various complex features, for which
different implementations can choose to implement different
subsets. In addition, text-based protocols introduce flexible
formatting and tolerance (e.g., allowing whitespace and com-
ments to be freely inserted in many places), creating ample
room for inconsistencies, especially when implementations
vary in how they tolerate non-compliant inputs.

Finally, the process of sender authentication involves a
chain of components, creating strong dependencies on imple-
mentation consistency and correctness. As shown in Figure 4,
an email sent by the sender’s MUA might be processed by
at least six different components before reaching the recip-

5https://youtu.be/IsWgAEbPaK0
6 https://youtu.be/DRepfStOruE
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ient. Inconsistencies between any two components in the
processing chain may introduce ambiguities.

All together, these elements create a tangled situation that
human implementors and operators are unlikely to get it right.

8.1 Mitigation
We suggest a number of possible mitigations for these prob-
lems, ranging from immediate (mostly) implementation-level
improvements, to broader considerations when designing pro-
tocols:

Following operational guide on DKIM specification to pre-
vent replay attacks. RFC 6376 suggests that DKIM signers
should include all important headers in DKIM signatures and
avoid using the “l=” tag to prevent spoofing attacks.

RFC 6376 also suggests that DKIM signers
should “oversign”, i.e., repeat important head-
ers, to prevent replay attacks, such as using
“h=from:from:subject:subject:to:to. . . ”. This
technique takes advantage of two DKIM features. First, each
parameter of the “h=” tag matches a single occurrence of
a header. Therefore, if a message has two Subject headers
(which normally it will not), “h=subject:subject” will
prevent an attacker from tampering with either of them.
Second, DKIM allows signing nonexistent headers. For
example, if a message lacks a Subject header, “h=subject”
will prevent an attacker from adding one to the signed
message.

Combining these two features, a domain owner can prevent
replay attacks by setting “h=from:from” for messages with
one From field. The first parameter signs the contents of the
From header, and the second parameter guarantees that there is
no additional From header. Any attempt to add an extra From
header will break the signature. Among the 10 email providers
we tested, only Yahoo.com adopts this solution. When we
reported the vulnerabilities to Mail.ru, they informed us that
they disabled this solution because of DKIM compatibility
issues. However, they stated that they plan to re-enable it in
Q1 2020.

Improving MUA display. MUAs would benefit from incor-
porating systematic consideration of how to better display
security features. Most of the MUAs we tested do not dis-
play SPF, DKIM, or DMARC authentication results explic-
itly, making it difficult for end users, especially mobile client
users, to apprehend the authentication status of the message.
This lack facilitates attackers in bypassing server-side au-
thentication, for example, by appending invisible characters
to trick email servers into failing to obtain policy informa-
tion via DNS. One possible approach for mitigating such
attacks would be to add icons indicating emails with verified
sender domains. We note however that experiences with such
approaches for promoting HTTPS (via browsers displaying
trusted icons for websites with valid TLS certificates) have
demonstrated the challenges of ensuring that users correctly
interpret the icons and do not get fooled by imposters [11–13].

We frame the above mitigations as “tactical”: steps doable
without significantly redesigning components or protocols.
We now frame more strategic—but also more involved—
mitigations.

Use of normalization. To defend against attackers using
accounts on email services, email providers can consistently
reset message headers (such as From) to remove potential
ambiguities. However, the effectiveness of this approach still
relies on correct parsing and interpretation of email MIME
structures. We also caution that hardening a weak authenti-
cation system by composing it with additional security com-
ponents, such as sanitizers or monitors, itself can introduce
complex compositions that create new vulnerabilities, as we
showed in Figures 6c and 6e.

Leveraging type systems to prevent internal inconsistencies.
Some of our intra-server attacks, such as injection attacks,
stem from inconsistent interpretations of messages between
different internal components. Although implementors can
address the specific attacks by filtering special characters that
induce confusion, constructing fully correct filters can prove
challenging. A more powerful implementation approach is
to leverage a type system, such as using types to distinguish
whether a field holds data or control information. If message
forwarding between different components within a process
preserves the type information, then injection threats can
be addressed in a general fashion. However, employing this
technique across disparate processes is more difficult, because
for many communication frameworks the serialization and
deserialization of messages (e.g., using JSON) can lose the
necessary semantic information.

Avoiding re-processing. The root cause of UI-mismatch
attacks is inconsistencies between email providers and MUAs.
One possible mitigation solution7 is for mail servers to pro-
vide authentication information to email clients directly, so
that email clients can avoid re-parsing and re-verifying com-
plex messages. Although RFC 8601 defines Authentication-
results header to convey this information, the header itself can
be forged by attackers. A more trustworthy way is to develop
a future IMAP/POP3 extension that exposes the authentica-
tion results. The mail servers can pass the authentication
information, including the verified address and verification
results, to MUAs via IMAP/POP3 commands. The MUAs
can then display the raw information exposed by mail servers
without any additional parsing and verification.

Testing. To aid the community in securing additional email
systems, we will make our testing tool publicly available via
GitHub8 after our reported issues are fixed by the vendors.

8.2 Discussion
That we could find so many attacks for widely used email ser-
vices against their email authentication and integrity checks—
crucial defenses against phishing and spear-phishing attacks—

7This idea comes from our discussion with eM Client.
8https://github.com/chenjj/espoofer



provides a wakeup call regarding the potential fragility of
multi-component Internet services. While the specifics of
the attacks reflect the particulars of various email protocols
and mechanisms, in abstract terms the attacks leverage sev-
eral classes of vulnerabilities likely present in other complex
multi-component services.

In general, it is difficult to make components built by dif-
ferent developers fully consistent: 1) specifications allow for
latitude in interpreting details; 2) it is easy to overlook the
possibility of deliberate ambiguities in attacker-provided in-
puts; 3) specifications themselves evolve over time, with some
components keeping outdated functionality for compatibility;
4) components can differ in which subset of a suite of complex
features they implement; 5) components can vary in how they
tolerate non-compliant inputs; and 6) functional equivalence-
checking between complex components is intractable.

Many of the vulnerabilities we found arise not from pro-
gramming mistakes but intended features. These features
appear harmless when a component runs independently, but
when integrated into a larger system, they introduce security
issues. These attacks underscore a broad threat in modern sys-
tem construction. Furthermore, the more complex a system’s
compositions, the more inconsistencies it may have, likely
creating more vulnerabilities.

9 Related Work
Prior work discusses malformed email messages bypassing
DMARC and DKIM [4, 14, 15]. Mailsploit encoded special
characters such as newlines in From headers using an encod-
ing approach given in RFC 1342 [14]. The author found that
many email clients failed to properly sanitize such characters
after decoding, leading to email-spoofing and code-injection
attacks. This attack is similar but not the same as our A10
attack that uses encoding: his attacks encode control charac-
ters in From headers to exploit parsing errors in email clients,
while our attacks encode spoofed email addresses to exploit
inconsistencies between email servers and clients.

Replay attacks are a known problem noted in the DKIM
specification [4], which in § 8 warns DKIM users of attacks
involving extra header fields and the “l=” tag. But many
developers overlook these warnings, and Ullrich presented
multiple concrete attacks to exploit such weaknesses [15].
Based on the previous work, we introduce a new threat model
to enhance the replay attacks. The previous replay attacks
can’t spoof the email body in DKIM-signed messages unless
the target sites are misconfigured with the l= tag. Our at-
tacks provide a new way to achieve this by combining replay
attackers and malicious users of legitimate email providers.

These two efforts provided valuable initial considerations
of the problem of bypassing email sender authentication mech-
anisms, and noted some of the complexities in parsing email
messages. We build on this work by distilling the general
theme of sender identity confusion due to inconsistencies
between different components. Employing this theme facili-

tated us then identifying sources of ambiguities, enabling us
to perform in-depth analyses leading to the discovery of a
wide range of new attacks.

The email parsing inconsistencies our UI-mismatch attacks
exploit can also exist in other systems, such as web appli-
cations. A previous writeup by Alderson showed that email
address parsing inconsistencies in web applications can be ex-
ploited to take over accounts [16]. A recent blog by Davison
discusses the possibility of exploiting address parsing incon-
sistencies between web applications and third-party sending
services (e.g., Amazon SES) to bypass web application vali-
dation logic [17].

Another potential attack involving third-party sending ser-
vices is cross-user spoofing, e.g., an SES user attempts to
spoof another SES user’s domain. We tested four popu-
lar third-party sending services (Amazon SES, SendGrid,
Mailgun, and SparkPost) and found that none of them ade-
quately validate From headers in messages: some (SendGrid,
Mailgun) allow arbitrary From headers; some (SES, Spark-
Post) can be bypassed using the techniques developed in
Section 5. Fortunately, all of them validate MAIL FROM and
DKIM-Signature domains strictly (by verifying domain own-
ership), which makes DMARC bypassing difficult. But such
services should consider addressing this issue anyway, be-
cause previous studies have shown that DMARC deployment
and enforcement is problematic in practice [18–20].

Many researchers have conducted measurement studies on
the deployment of SPF, DKIM, and DMARC [18–20]. Their
results indicate that the adoption and enforcement of these
extensions needs improvement. The community is actively
promoting these security mechanisms—for example, the U.S.
Department of Homeland Security requires all Federal agen-
cies to deploy strict DMARC policies [21]. Our study shows
that even in strict-deployment environments, attackers can
still bypass these mechanisms.

Prior work has developed various phishing detection meth-
ods based on features extracted from email content, such as
keywords, URLs, and attachments [22–24]. Our work focuses
on how email systems authenticate the incoming messages;
our attacks do not aim to bypass email content filters.

Recently, new protocols have been developed to enhance
spoofing detection, such as BIMI (Brand Indicators for Mes-
sage Identification) [6] and ARC (Authenticated Received
Chain) [7]. BIMI is built on DMARC, and allows domain
owners to coordinate with MUAs to display brand-specific
indicators for DMARC-authenticated messages. ARC is built
on SPF, DKIM and DMARC, and aims to address the au-
thentication failure problem caused by modifications of mail
forwarders. ARC allows each mail forwarder to append their
authentication assessment results to the forwarded message,
so that the receiving servers can make informed decisions
based on authentication results from earlier forwarders. Since
both BIMI and ARC rely on the correctness of DMARC veri-
fication, they are not helpful in preventing most of our attacks.



OpenPGP and S/MIME are two other standards to provide
end-to-end authenticity of messages by digital signatures. Re-
searchers have found many email clients to be vulnerable to
signature spoofing or plain-text exfiltration attacks [25, 26].
Some of their attacks craft malformed MIME messages to
exploit inconsistencies between signature verifiers and email
display components. These attacks underscore an issue also
highlighted by our work, namely that shifting sender authen-
tication from email servers to clients cannot prevent email
spoofing if inconsistencies exist.

Bratus et al. and Sassaman et al. proposed a formal lan-
guage theory (LANGSEC) [27, 28] that provides a unifying
framework regarding the root cause underlying the majority
of software security problems: the complexity of the input
language used in many real-world applications exceeds theo-
retical decidability bounds. These works advocate that proto-
col designers should restrict languages to lower levels of the
Chomsky hierarchy to reduce parsing bugs and inconsistency
bugs. Our attacks confirm the general problem they sketched;
for example, many UI-mismatch attacks we found have their
roots in the complexity of the From header syntax.

In addition to SMTP, inconsistency problems also ex-
ist in other computer systems, such as IP packet process-
ing [9, 29–33], HTTP and web systems [34–39], file pro-
cessing [40–43] and abuse of other operating system re-
sources [44]. Handley et al. proposed “normalization” to
rewrite network traffic to eliminate ambiguities between
NIDS and end-hosts [9]. Wang et al. used verification-
condition checking to identify inconsistent logic flaws in web
payment systems [35]. Hooimeijer et al. designed the BEK
language to analyze differences in sanitizers of web applica-
tions and mitigate XSS by using SMT solvers [45]. Brumley
et al. proposed detecting discrepancies between different im-
plementations by converting execution traces into symbolic
formulae and comparing them using SMT solvers [46]. Some
researchers have used differential fuzz testing techniques to
identify discrepancies across different types of applications,
such as C compilers [47], Java virtual machines [48], and
SSL/TLS implementations [49–51].

10 Summary
Software components are supposed to make software less
fragile and more reliable. In practice, however, part of the
fragility is merely shifted from the component artifacts to the
connectors and the composition process. When the composi-
tion is unreliable, composed systems can prove vulnerable.

In this paper, we illustrate the security implications of this
problem in the context of modern email services. We present
three classes of practical attacks against email authentication
systems and identify a wide variety of inconsistencies be-
tween different components across email servers and clients.
We show that these inconsistencies can enable an attacker
to bypass email authentication to impersonate any site, and
even forge DKIM-signed emails with a legitimate domain’s

signature. All 10 email providers and 19 MUAs in our experi-
mental testing proved vulnerable to multiple of the 18 attacks
that we developed.

As our software systems become increasingly complex, the
need for building them out of disparate independent compo-
nents rises. It appears likely that, in addition to email systems,
many other real-world applications suffer similar problems.
We hope this work can inspire the community to work towards
securing additional applications.
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