
Host of Troubles: Multiple Host Ambiguities in HTTP
Implementations

Jianjun Chen?†

chenjj13@mails.tsinghua.edu.cn
Jian Jiang‡

jiangjian@berkeley.edu
Haixin Duan?†

duanhx@tsinghua.edu.cn

Nicholas Weaver‡§
nweaver@icsi.berkeley.edu

Tao Wan¶

tao.wan@huawei.com
Vern Paxson‡§

vern@berkeley.edu
?Tsinghua University, †Tsingua National Laboratory for Information Science and Technology

‡UC Berkeley, §ICSI, ¶Huawei Canada

ABSTRACT
The Host header is a security-critical component in an HTTP
request, as it is used as the basis for enforcing security and
caching policies. While the current specification is generally
clear on how host-related protocol fields should be parsed
and interpreted, we find that the implementations are prob-
lematic. We tested a variety of widely deployed HTTP im-
plementations and discover a wide range of non-compliant
and inconsistent host processing behaviours. The particu-
lar problem is that when facing a carefully crafted HTTP
request with ambiguous host fields (e.g., with multiple Host
headers), two different HTTP implementations often accept
and understand it differently when operating on the same
request in sequence. We show a number of techniques to
induce inconsistent interpretations of host between HTTP
implementations and how the inconsistency leads to severe
attacks such as HTTP cache poisoning and security policy
bypass. The prevalence of the problem highlights the poten-
tial negative impact of gaps between the specifications and
implementations of Internet protocols.

1. INTRODUCTION
Postel’s law, also called the robustness principle, is com-

monly phrased as“Be conservative in what you do, be liberal
in what you accept from others” [19]. Although this maxim
is regarded as a good design principle for robust network
systems, it may prove disastrous in an adversarial context.
Attackers can exploit this permissiveness when two different
devices interpret the same liberal response differently.

Perhaps the most permissive widely deployed protocol is
HTTP. Although the request format is tightly specified [6],
many implementations are quite broad in what they actually
accept. Some variations appear harmless in a single product,
but inconsistent interpretation between different parties can
have drastic consequences.

The problem arises when an attacker can generate a di-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978394

rect HTTP request (such as by using Flash on a victim’s
web browser) where the request contains multiple, ambigu-
ous mechanisms to define the target host, such as multiple
Host headers or a Host header combined with an absolute-
URI in the request-line. If one in-path device (such as a
cache proxy or firewall) interprets the request one way but
the final destination (such as a Content Delivery Network
(CDN) or other co-hosting service providers) interprets it
differently, the result may be an exploitable semantic incon-
sistency. These can enable cache poisoning and filter bypass,
which we frame as reflecting a “Host of Troubles”.

We conduct an in-depth empirical study to understand
how inconsistent interpretation of Host can manifest be-
tween different HTTP implementations and what kind of
security consequence it leads to. We find significantly differ-
ent behaviour among 33 popular HTTP implementations,
leading to three exploiting techniques: (a) multiple Host
headers, (b) space-surrounded Host headers, and (c) requests
with absolute-URI. We identify a large number of combina-
tions of downstream and upstream HTTP implementations
where an inconsistent host semantic could occur. We find
that such semantic inconsistency can lead to severe security
consequences such as cache poisoning and filtering bypass.

Overall, we make three main contributions:
1) We present a class of new attacks, “Host of Troubles”,

that broadly threaten the Internet. Our study shows that
these attacks affect numerous HTTP implementations, some-
times severely. One of the exploits we found in Squid allows
an attacker to remotely poison the cache of any HTTP web-
site with arbitrary content.

2) We systematically study the behavior of 33 HTTP im-
plementations in their handling of Host headers and identify
a large range of interpretation inconsistencies that attack-
ers can leverage for cache poisoning and filtering bypass. We
have reported these to CERT/CC and affected vendors, who
are actively addressing them.

3) We conduct a large scale measurement of transparent
caches on the Internet and discover that around 97% of users
served by a transparent cache are subject to cache poisoning
attacks we found. We provide an online checker for users
to evaluate whether their networks are vulnerable to such
attacks.

2. BACKGROUND
An HTTP request consists of a request start-line, zero or

more request headers and an optional message body. The

request-line and the request headers specify the HTTP pro-
tocol fields. One of the most important purposes of the pro-
tocol fields in a request is for recipient to locate the requested
resource. In HTTP/1.0, the only field for this purpose is
a request-target in the request-line. The request-target can
be a host-relative path starting with “/”, or an absolute-URI
composed of a schema, a host, and a path. The latter is de-
signed to support resource access through a proxy, although
end systems will also accept absolute-URIs in the request-
line. HTTP/1.1 introduced a Host header to support request
routing in a co-hosting environment where multiple websites
deploy on a same IP address. These websites are isolated by
different domains.

HTTP is a client-server protocol with explicit support of
intermediates. Five categories of intermediates are com-
monly deployed and relevant in this study: forward prox-
ies, interception proxies (transparent caches), reverse prox-
ies, Content Delivery Networks (CDNs), and firewalls. For
purposes of this paper, we will designate the first device
as “downstream” which can forward the request to the “up-
stream” device 1.

A forward proxy is explicitly configured in a client, such
as a web browser, to handle all web requests for that client.
Forward proxies are commonly configured for either perfor-
mance, filtering, privacy, mandatory censorship, or censorship-
evasion reasons. It is also possible to chain forward proxies,
where one forward proxy passes all requests to another for-
ward proxy.

An interception proxy requires neither client nor server
interaction. To intercept all web requests, an interception
proxy usually depends on a network device that uses policy
based routing to forward all web packets (i.e., with source
or destination TCP port of 80 or 443) to the proxy. The
interception proxy then inspects all web requests before for-
warding them onward. The most common use for such proxy
is content caching 2. Therefore it is also commonly referred
as a transparent cache. Internet Services Providers (ISPs)
deploy transparent caches to improve performance and to
localize network traffic [30].

A reverse proxy is deployed in front of one or more servers.
Clients directly issue requests to the reverse proxy, which
then retrieves resources from servers. Reverse proxies are
usually configured to provide features that are independent
of web applications. Common features include load balanc-
ing, caching, TLS/SSL termination, and content filtering.

A CDN is essentially a reverse proxy service provided by
a third party. A CDN can provide desired reverse proxy fea-
tures with a large number of nodes that are geographically
close to end-users. Once authorized by a website (usually
by configuring the site’s DNS), requests to the website are
directly sent to near-by nodes of the CDN provider. These
CDN nodes either serve the requests with cached content or
forward to original server of the website. CDNs are widely
adopted as they offer substantial benefits to both latency
and available bandwidth.

Firewalls are commonly deployed on end-hosts or at net-
work edge, inspecting passing-through traffic to enforce var-

1RFC 7230 [6] has an inconsistent definition, as the roles of
“upstream” and “downstream” are switched whether it is a
request or a response, since it just specifies that all messages
flow from upstream to downstream.
2The other primary use is mandatory censorship in corpo-
rate networks.

ious security policies. The security policy relevant to this
work is website blacklisting, in which a firewall examines
HTTP requests to block access to unwanted websites (e.g.,
by injecting TCP resets or dropping packets).

An important and relevant difference between these in-
termediates is how they handle HTTPS traffic. Forward
proxies, transparent caches, and network-based firewalls are
not capable of inspecting HTTP messages over HTTPS con-
nections unless they act as TLS/SSL man-in-the-middle. In
comparison, HTTPS connection can always terminate at an
HTTPS capable reverse proxy or CDN node.

3. MULTIPLE HOST AMBIGUITIES
Generally, processing an HTTP request can be divided

into two phases: in the first phase, the textual message is
firstly parsed to recognize valid protocol fields, and the rec-
ognized protocol fields are interpreted into a semantic struc-
ture; in the second phase, the semantic structure is then
used for further actions. A request with invalid protocol
fields should be rejected in the first phase with Client Error
4XX responses.

In parsing and interpreting the HTTP semantics, one of
the most important designations is what host is involved
with the request, because Host is the key protocol field for
resource locating, request routing, caching, etc. The prob-
lem of multiple host ambiguities arises when two parties
in an HTTP processing-chain parse and interpret host in a
crafted, adversarial request differently. Inconsistency of host
between two parties often causes disastrous consequences be-
cause of its semantic importance.

Two parties of one HTTP processing-chain can be con-
nected either in parallel or in series. For the former case, two
parties receive same request simultaneously. Discrepancies
in parsing and interpreting between the two directly result in
a semantic inconsistency of host. For example, an Intrusion
Detection System (IDS) and its protected server are usually
connected in parallel, Inconsistency of host between them
may enable IDS evasion if the IDS is looking for a particular
host. In the latter case, a downstream party receives and
processes a request, then forwards it to an upstream device.
In such case, different parsing and interpreting behaviours
are not sufficient to cause semantic inconsistency between
the downstream and the upstream. How the downstream
forwards the request also plays a necessary role in whether
semantic inconsistency could occur. Inconsistent interpreta-
tion of host can be avoided if the downstream always for-
wards a normalized request that is unambiguous with its
own interpretation.

We assess the problem of multiple host ambiguities in de-
ployed HTTP systems by conducting black-box testing on
a total of 33 widely used HTTP implementations, including
6 servers, 2 transparent caches, 3 forward proxies, 7 reverse
proxies, 8 CDNs, and 7 firewalls. Table 1 presents the names
and versions of the tested implementations. Some programs
support multiple configurations. For these programs, we
test their typical working modes and count them as differ-
ent implementations in corresponding categories. For exam-
ple, Squid can be configured as three modes: transparent
cache, forward proxy, and reverse proxy. We test it in all
three modes respectively, and would therefore count this as
3 tested implementations. Hereinafter, we use “name (cate-
gory)” to refer specific tested implementations.

Prior experience of HTTP specifications and implementa-

Category Implementation (version)
Server Apache (2.4.20), IIS (8.5), Lighttpd (1.4.39), LiteSpeed (5.0.16), Nginx (1.9.13), Tomcat (8.0.33)
Transparent Cache Apache Traffic Server ATS (6.1.1), Squid (3.5.16)
Forward Proxy Apache, IIS, Squid
Reverse Proxy Apache, IIS, Lighttpd, LiteSpeed, Nginx, Squid, Varnish (4.1.2)
CDN Akamai, Alibaba, Azure, CloudFlare, CloudFront, Fastly, Level3, Tencent
Firewall Bitdefender (Internet Security 2016 on Win8.1), ESET (Cyber Security Pro 6.1.12.0 on Mac), Huawei (USG 6370

Next Generation Firewall), Kaspersky (Internet Security 2016 on Win8.1), OS X (El Capitan 10.11.4), Palo Alto
Networks PAN (PA-7050), Windows (8.1 Pro)

Table 1: Tested HTTP implementations.

tions lead us to develop test cases based on three techniques:
multiple Host headers, a space-surrounded Host header, and
using an absolute-URI as a request-target. We first mea-
sured how the implementations parse and interpret crafted
requests with various ambiguous host in which we find a
large number of differences (Table 2 and Table 3). We then
turn to resolve their forwarding behaviours, because in prac-
tice the implementations we test are typically connected in
series. We found that 21 out of 33 implementations do not
normalize requests sufficiently when forwarding them to up-
stream (Table 4). With these knowledge, we further exam-
ine 396 selected downstream-upstream pairs of the tested
implementations. In total we identify 202 cases where a spe-
cially crafted request can cause inconsistent understanding
of which host the request should be attributed to between
the downstream and the upstream systems (Table 5). In
addition, we also discovered one case where different host
interpretation occurs between different internal modules in
one implementation.

In the rest of this section, we first explain how we explore
the three testing techniques, illustrated with representative
cases. We then present some further details of our findings.

3.1 Multiple Host Headers
Specifications. RFC 2616 [5] states that a request with

multiple same name headers is allowed only if the value of
this header is defined as a single comma-separated list, which
implies that a request with multiple Host headers is invalid.
RFC 7230 [6] explicitly specifies that requests with multiple
Host headers must be reject with 400 Bad Request.

Implementations. We find that 25 out of 33 tested im-
plementations do not follow the specifications to reject re-
quests containing multiple Host headers. Apache (Server,
Reverse Proxy) concatenate multiple Host headers with a
comma (implicitly combining the multiple headers into a
single invalid host), and OS X (Firewall) likely behaves in
the same way. Among the rest 22 implementations, all take
the first header except Tencent (CDN) and ESET (Firewall),
which take the last header.

Inconsistent interpretation of the hostname happens be-
tween an upstream and a downstream if they have different
preference of multiple Host headers, and the downstream
forwards multiple, ambiguous Host headers to the upstream
system. Figure 1(a) shows such an example. However, we
find that in many cases, the downstream performs some form
of normalization such that the forwarded request does not
contain multiple and different Host headers. For example,
the same technique in Figure 1(a) does not work when Squid
(Transparent Cache) as downstream and Tencent (CDN) as
upstream, because Squid (Transparent Cache) changes all
recognized Host headers to the value it interprets. Interest-
ingly, these normalizations are often insufficient when spaces
come into play.

3.2 Space-surrounded Host Header
Specifications. Space around a header name can appear

in three forms: the first header with preceding spaces, other
headers with preceding spaces, and headers with succeeding
spaces. RFC 2616 does not have explicit text for the first
and the third case. The syntax definition implies that sys-
tems should reject the former and allow the latter. For the
second case, RFC 2616 states that a such header needs to
be processed as folded line of its previous header: remove
its preceding line break characters to concatenate with the
previous header.

RFC 7230 has explicit text description for each case. For
the first, it suggests to either reject the request or ignore the
header. For the second case, although RFC 7230 already
obsoletes line folding, it still allows a proxy or a server to
process as line folding for backward compatibility consider-
ations. The third case is explicitly forbidden.

Implementations. We find that implementations vary
largely in processing space-surrounded Host headers. Ta-
ble 2 presents detailed behaviours for each implementation.
Notably, we observe 10 distinct behaviours among 33 im-
plementations. Only 5 implementations comply with RFC
2616 and 2 comply with RFC 7230. In addition, when acting
as upstream, 16 implementations appear to forward space-
surrounded Host headers to the upstream under certain con-
ditions (see Table 4 for details).

These behaviours open new opportunities of multiple host
ambiguities. In most cases, different understanding of host
happens between an upstream and a downstream because
they interprets space-surrounded Host headers differently.
For example, in Figure 1(b), Squid (Transparent Cache)
sees the space-preceding Host header as an unknown header.
Therefore it forwards the space-preceding Host header with-
out normalization. However, the downstream, Tencent (CDN),
recognizes the space-preceding Host header as valid Host
header and accepts its value as interpreted host because it
prefers the last of multiple Host headers.

Sometimes, even the upstream and the downstream have
similar or same host parsing and interpreting logic, they
may still be fooled to interpret one request differently be-
cause of special forwarding behaviours of the upstream. Fig-
ure 1(c) shows such an example. Both Akamai (CDN) and
Squid (Reverse Proxy) prefer the first of multiple Host head-
ers, they also have similar behaviours in processing space-
preceding Host header. However, in certain cases, Aka-
mai (CDN) “flips” space-preceding Host header and normal
Host header when forwarding a request. The flipped request
causes a downstream Squid (Reverse Proxy) to interpret a
different host.

3.3 Absolute-URI as Request-Target
As we explained in Section 2, HTTP allows a client to

send absolute-URI as request-target, which contains a host

ESET
(Firewall)

Nginx
(Server)

GET / HTTP/1.1
Host: block.com
Host: allow.com

Client

host: allow.com host: block.com

GET / HTTP/1.1
Host: block.com
Host: allow.com

(a) Preference of multiple Host headers.

Squid
(Transparent

Cache)

Tencent

(CDN)

GET / HTTP/1.1

Host: tencent-victim.com

 Host: tencent-attack.com

Client

host: tencent-victim.com host: tencent-attack.com

GET / HTTP/1.1

Host: tencent-victim.com

 Host: tencent-attack.com

(b) Multiple Host headers combined with preceding space.

Akamai

(CDN)
Squid

(Reverse Proxy)
Client

host: akamai-victim.com host: akamai-attack.com

GET / HTTP/1.1

Host: akamai-victim.com

Doesnt: matter

 Host: akamai-attack.com

GET / HTTP/1.1

Doesnt: matter

 Host: akamai-attack.com

Host: akamai-victim.com

(c) Exploiting “flipped” forwarding.

Squid
(Transparent

Cache)

Akamai

(CDN)
Client

host: akamai-victim.com host: akamai-attack.com

GET http://akamai-victim.com/ HTTP/1.1

 Host: akamai-attack.com

GET / HTTP/1.1

 Host: akamai-attack.com

Host: akamai-victim.com

(d) Absolute-URI with Host header.

Fastly
(CDN)

Nginx
(Server)

Client

host:protectdisabled.com host: protectenabled.com

GET nonhttp://protectenabled.com/ HTTP/1.1
Host: protectdisabled.com

Attacking payload

GET nonhttp://protecteabled.com/ HTTP/1.1
Host: protectdisabled.com

Attacking payload

(e) Schema of absolute-URI.

CloudFlare
(CDN)

OthersClient

host:protectdisabled.com host: protectenabled.com

GET any://protectenabled.com/ HTTP/1.1
Host: protectdisabled.com

Attacking payload

GET / HTTP/1.1
Host: protectenabled.com

Attacking payload

(f) Interpreting absolute-URI, forwarding Host header.

Figure 1: Different cases of inconsistent interpretation of host between upstream and downstream.

component. It turns out the intervention between host com-
ponent in absolute-URI and Host header is another vector
for multiple host ambiguities.

Specifications. Both RFC 2616 an RFC 7230 require
server to accept absolute-URI as request-target, and to pre-
fer host component of absolute-URI than Host header. RFC
7230 additionally requires requests with absolute-URI to
have identical host component as Host header. Both of the
two RFCs do not explicitly state which schema is allowed in
the absolute-URI.

Implementations. We find that implementations vary
in recognizable schema of absolute-URI. While some recog-
nize host in absolute-URI with any schema, some only sup-
port HTTP and/or HTTPS schemas, ignoring or rejecting
absolute-URI with unsupported schemas. Few implemen-
tations do not recognize a hostname in an absolute-URI.
For implementations recognizing a hostname in absolute-
URI, all except Akamai (CDN) comply with RFCs to prefer
the host in the absolute-URI over Host header. But only
Azure (CDN) enforces the identicality check required by
RFC 7230. When forwarding, most implementations rewrite
the absolute-URI to its path and add a Host header, ex-
cept that LiteSpeed (Reverse Proxy) forwards absolute-URI
to upstream unconditionally. Lighttpd (Reverse Proxy),
Varnish (Reverse Proxy), and Fastly (CDN) also forward
absolute-URIs when they do not recognize the schema.

In general, absolute-URIs enables two kinds of host am-
biguities between an upstream and a downstream. First,
when the downstream recognizes host in an absolute-URI,
and rewrites it to path before forwarding, the upstream may
recognize a (space-surrounded) Host header that is different
from the host in the absolute-URI. For example, as shown
in Figure 1(d), a Squid (Transparent Cache) takes the host
from absolute-URI. However, the upstream, Akamai (CDN),
interprets the host of the forwarded request using the dif-
ferent, space-preceding Host header. Second, if the down-
stream forwards the absolute-URI as-is, then different inter-
pretation of the absolute-URI between the upstream and the

downstream may cause inconsistent interpretation of host.
In Figure 1(e), Fastly (CDN) does not recognize host in the
absolute-URI because the schema is not HTTP. It takes Host
header, and forwards the absolute-URI to the upstream. In-
stead, the upstream Nginx (Server), which recognizes the
host in an absolute-URI with any schema, will interpret the
forwarded request with the host in the absolute-URI.

We also found a case where absolute-URI causes inconsis-
tent host between internal modules of one implementation.
We present the details in Section 4.1.

3.4 Upstream-Downstream Combinations
We examine upstream-downstream combinations that we

believe have some real-world deployment. Generally the
downstream can be a transparent cache, a forward proxy,
a reverse proxy, a CDN, or a firewall while the upstream
can be another reverse proxy, CDN, or server. Among these
combinations, we exclude the cases where the downstream
is a reverse proxy and the upstream is a CDN because we
are not aware of real-world case of such a scenario. We also
exclude self-chaining of CDNs because these cases are con-
sidered harmful and CDNs should reject these [2].

128 out of 202 cases of host inconsistency are between fire-
walls (downstream) and other implementations (upstream).
The main reason is that all tested firewalls but Bitdefender
do not modify requests when forwarding. For each firewall,
its parsing and interpreting behaviours are sufficiently differ-
ent from most of other implementations so that we can find
ways to cause a different interpretation of host. The only
exception, Bitdefender, likely fails open when processing a
request with absolute-URI.

CloudFlare has a unique forwarding behaviour that always
and only forwards the first Host header. Because CloudFlare
recognizes the host component in an absolute-URI with any
schema, a request presented in Figure 1(f) is sufficient to
cause host inconsistency between CloudFlare and any pos-
sible upstream.

Implementation/
Specification

Space-preceded Host
as first header

Other space-
preceded Host

header

Space-succeeded
Host header

schema of absolute-URI

Server

Apache Not recognize Line folding Recognize Recognize HTTP, not others
IIS Recognize Line folding Recognize Recognize HTTP/S, reject others

Lighttpd Reject Line folding Recognize Recognize HTTP/S, not others
LiteSpeed Reject Line folding Recognize Recognize any schema

Nginx Not recognize Not recognize Not recognize Recognize any schema
Tomcat Not recognize Line folding Not recognize Recognize HTTP/S, reject others

Transparent
Cache

ATS Not recognize Not recognize Not recognize Recognize any

Squid
If no host before: recognize,

else: not recognize
If no host before: recognize,

else: not recognize
If no host before: reject,

else: recognize
Recognize HTTP, reject others

Forward
Proxy

Apache Not recognize Line folding Recognize Recognize HTTP, reject others
IIS Recognize Line folding Recognize Recognize HTTP/S, reject others

Squid
If no host before: recognize,

else: not recognize
If no host before: recognize,

else: not recognize
If no host before: reject,

else: recognize
Recognize HTTP, reject others

Reverse
Proxy

Apache Not recognize Line folding Recognize Recognize HTTP, not others
IIS Recognize Line folding Recognize Recognize HTTP/S, reject others

Lighttpd Reject Line folding Recognize Recognize HTTP/S, not others
LiteSpeed Reject Line folding Recognize Recognize any schema

Nginx Not recognize Not recognize Not recognize Recognize any schema

Squid
If no host before: recognize,

else: not recognize
If no host before: recognize,

else: not recognize
If no host before: reject,

else: recognize
Recognize HTTP, reject others

Varnish Reject Line folding Reject Recognize HTTP, not others

CDN

Akamai
If no host before: recognize,

else: not recognize
If no host before: recognize,

else: not recognize
Reject Recognize HTTP/S, reject others

Alibaba Not recognize Not recognize Not recognize Recognize any schema
Azure Reject Line folding Recognize Recognize HTTP/S, reject others

CloudFlare Not recognize Not recognize Not recognize Recognize any schema
CloudFront Not recognize Not recognize Not recognize Recognize any schema

Fastly Reject Line folding Reject Not recognize any schema
Level3 Not recognize Not recognize Reject Recognize HTTP/S, reject others

Tencent Recognize Recognize Recognize Recognize HTTP, reject others

Firewall

Bitdefender Recognize Recognize Recognize Likely fail-open
ESET Not recognize Not recognize Not recognize Recognize any schema

Huawei Not recognize Not recognize Not recognize Recognize any schema
Kaspersky Not recognize Not recognize Not recognize Recognize any schema

OS X Not recognize Not recognize Not recognize Not recognize any schema
PAN Not recognize Not recognize Not recognize Recognize HTTP/S, not others

Windows Recognize Recognize Recognize Recognize any

Specification
RFC 2616 Reject (implicit) Line folding Recognize Not specified
RFC 7230 Reject or not recognize Reject or line folding Reject Not specified

Table 2: Host parsing behaviours: specifications and tested implementations (“recognize” means accepting as valid host field,
“not recognize” means either ignoring or accepting as an unknown header field, “reject” means responding with 400 Bad
Request).

4. EXPLOITATIONS
The presence of ambiguous chains enables potential ex-

ploitation. We have observed two types of exploitations:
cache poisoning and filtering bypass. Each exploitation has
two different forms.

4.1 HTTP Cache Poisoning
The first form of cache poisoning exploits the inconsis-

tency between internal modules of Squid (Transparent Cache)
to attack any unencrypted website. Therefore we call it
general cache poisoning. The scenario requires an attacker
who can send HTTP requests that pass through a shared
transparent cache (Squid); “attack.com” controlled by the
attacker and “victim.com” as the victim site, illustrated in
Figure 2.

The attacker first establishes a TCP connection to the
HTTP server at “attack.com”. Since the Squid proxy op-
erates in a transparent fashion, it intercepts and mediates
this connection. The attacker then issues an HTTP request
with “victim.com” in absolute-URI and “attack.com” as Host
header over this connection. Squid identifies the request
as going to “victim.com”. When it inspects the destination
IP address for consistency, however, it mistakenly checks it
against the value of the Host header, “attack.com”, rather

Victim

User
Attacker

Squid

(Transparent Cache)
Attack.com

IP:1.1.1.1

Connect 1.1.1.1

GET http://victim.com/ HTTP/1.1

Host:attack.com

attack.com ==

1.1.1.1? yes!
malware

cache as http://

victim.com/GET / HTTP/1.1

Host:victim.com

cached malware

1

2

3

4

7

6

5

Figure 2: General cache poisoning of any unencrypted web-
site on a Squid transparent cache.

than “victim.com”. Thus, the proxy directly passes the re-
quest to the “attack.com” server, but caches the (malicious)
reply the server returns as a resource of “victim.com”.

The second form of cache poisoning exploits the inconsis-
tency between a downstream and an upstream, poisoning
cache on the downstream to attack websites hosting on the
upstream. We call it co-hosting cache poisoning because this
attack needs a co-hosting upstream that provides access for
both victim website and a website under attacker’s control.

Implementation
/Specification

Multiple Host
headers

Presence of host
Recognized absolute-URI

vs. Recognized Host header
Host header Absolute-URI Absent Preference Consistency

Server

Apache Concatenate Must Optional Reject Absolute-URI Optional
IIS Reject Must Optional Reject Absolute-URI Optional

Lighttpd Reject Optional Optional Reject Absolute-URI Optional
LiteSpeed Prefer first Optional Optional Allow Absolute-URI Optional

Nginx Prefer first Must Optional Reject Absolute-URI Optional
Tomcat Prefer first Optional Optional Reject Absolute-URI Optional

Transparent
Cache

ATS Prefer first Optional Optional Reject Absolute-URI Optional
Squid Prefer first Optional Optional Allow Absolute-URI Optional

Forward
Proxy

Apache Use absolute-URI Must Must Reject Absolute-URI Optional
IIS Reject Must Optional Reject Absolute-URI Optional

Squid Use absolute-URI Optional Must Reject Absolute-URI Optional

Reverse
Proxy

Apache Concatenate Must Optional Reject Absolute-URI Optional
IIS Reject Must Optional Reject Absolute-URI Optional

Lighttpd Reject Optional Optional Reject Absolute-URI Optional
LiteSpeed Prefer first Optional Optional Allow Absolute-URI Optional

Nginx Prefer first Must Optional Reject Absolute-URI Optional
Squid Prefer first Optional Optional Allow Absolute-URI Optional

Varnish Reject Optional Optional Allow Absolute-URI Optional

CDN

Akamai Prefer first Optional Optional Reject Host header Optional
Alibaba Prefer first Must Optional Reject Absolute-URI Optional
Azure Reject Must Optional Reject Absolute-URI Must

CloudFlare Prefer first Must Optional Reject Absolute-URI Optional
CloudFront Prefer first Must Optional Reject Absolute-URI Optional

Fastly Reject Must — Reject — —
Level3 Prefer first Optional Optional Reject Absolutea-URI Optional

Tencent Prefer last Must Optional Reject Absolute-URI Optional

Firewall

Bitdefender Prefer First Optional Optional Allow Likely fail-open Optional
ESET Prefer last Optional Optional Allow Absolute-URI Optional

Huawei Prefer first Optional Optional Allow Absolute-URI Optional
Kaspersky Prefer first Optional Optional Allow Absolute-URI Optional

OS X Likely concatenate Optional — Allow — —
PAN Prefer first Optional Optional Allow Absolute-URI Optional

Windows Prefer first Optional Optional Allow Absolute-URI Optional

Specification
RFC 2616 Reject (implicit) Must

Forward proxy: must
Others: optional

Reject Absolute-URI
Not

specified

RFC 7230 Reject Must
Forward proxy: must

Others: optional
Reject Absolute-URI Must

Table 3: Host interpreting behaviours: specifications and tested implementations.

Figure 1(d) provides an example where an attacker signs
up with Akamai using “akamai-attack.com” to attack an-
other Akamai customer “akamai-victim.com”. The attacker
issues a malicious request, fooling Squid to interpret the
request as belonging to “akamai-victim.com”, yet Akamai
understands this as going to “akamai-attack.com” and for-
wards to a server under attacker’s control. Consequently,
the Squid caches a malicious response returned by “akamai-
attack.com” as a resource of “akamai-victim.com”. We con-
firm that ATS, Apache, Squid, Akamai, Alibaba, Cloud-
Front are affected when acting as downstream with caching
and chaining with a co-hosting upstream. Lighttpd, Var-
nish, CloudFlare, and Fastly are not affected because the
exploiting requests interfere with their caching mechanisms.

Both forms of cache poisoning are remotely exploitable.
Attackers can readily obtain the necessary vantage point
using techniques such as Flash ads.

4.2 Filtering Bypass
The other significant attack vector is filtering bypass, where

a downstream detects and filters“unwanted”HTTP requests
not to reach an upstream, yet requests that exploit host
inconsistency between the upstream and the downstream
evade the downstream’s filtering.

The first form of filtering bypass affects a firewall’s website
blacklisting. In Figure 1(a), ESET blacklists “block.com”.
Yet when a client connects to the server of “block.com”, and
issues a crafted request, ESET is fooled to believe the re-
quest is going to “allow.com” which is not blacklisted. When

the request reaches the server, it identifies as “block.com”
and returns content that suppose to be blocked.

The other form of filtering bypass evades protections pro-
vided by co-hosting upstreams, such as some security fea-
tures of a CDN. Figure 1(f) and Figure 1(e) show how such
attack could happen on websites hosted on CloudFlare and
Fastly. An attacker signs up with CloudFlare or Fastly
with “protectdisabled.com” to attack “protectenabled.com”,
which is protected by security features of CDN. The attacker
first disables all security protection of“protectdisabled.com”,
and configures the forwarding destination as the original IP
of “protectenabled.com”. Then the attacker sends a mali-
cious request with an ambiguous host and attacking payload
(e.g., to exploit SQL injection). The ambiguous host causes
CloudFlare or Fastly to believe that the request belongs to
“protectdisabled.com” therefore it does not enforce any se-
curity policy. However, the upstream identifies the requests
as going to “protectenabled.com” and sees it is forwarded by
IPs of its CDN providers. Therefore the upstream trusts the
request as benign and serves without further checks. This
attack requires the attacker to uncover the target website’s
original IP that is supposed to be hidden. Previous research
shows this pre-condition is possible in many cases due to
imperfect operations [28] or simple mass scanning [4].

5. MEASURING TRANSPARENT CACHES
Among all potential exploitations we have found, we sug-

gest that the poisoning of transparent caches is of most con-

Implementation Simplified Description

Transparent
Cache

ATS
1. for absolute-URI, rewrite to path; use its host to change the first recognized Host header, or add a new Host
header before original headers;
2. forward all (other) recognized Host headers as-is;
3. forward space-preceded Host headers and space-succeeded Host headers as-is under certain conditions.

Squid 1. for absolute-URI, rewrite to path;
2. change all recognized Host headers (except space-preceded ones) to the interpreted host, or add a new Host
header after original headers;
3. forward space-preceded Host headers as-is.

Forward
Proxy

Apache 1. rewrite absolute-URI to path, use its host to change the recognized Host header, or add a new Host header
before original headers;
2. forward space-preceded Host headers as-is under certain conditions.

Squid 1. for absolute-URI, rewrite to path;
2. change all recognized Host headers (except space-preceded ones) to the interpreted host, or add a new Host
header after original headers;
3. forward space-preceded Host headers as-is.

Reverse
Proxy

Apache 1. for absolute-URI, rewrite to path;
2. change recognized (or add a new) Host header as forwarding destination, forward as first header;
3. forward space-preceded Host headers as-is under certain conditions.

Lighttpd 1. for absolute-URI with non-recognized schema, forward as-is; otherwise, rewrite to path;
LiteSpeed 1. forward all recognized Host headers as-is;

2. forward space-succeeded Host headers as-is;
3. forward absolute-URI as-is.

Squid 1. for absolute-URI, rewrite to path;
2. change all recognized Host headers (except space-preceded ones) to the interpreted host, or add a new Host
header after original headers;
3. forward space-preceded Host headers as-is.

Varnish 1. for absolute-URI with non-recognized schema, forward as-is.

CDN

Akamai 1. forward recognized space-preceded Host headers as-is;
2. forward other space-preceded Host headers as-is under certain conditions;
3. remove other recognized Host headers, add a new Host header after original headers.

Alibaba 1. forward space-preceded Host headers and space-succeeded Host headers as-is;
2. remove all recognized Host headers, add a new Host header after original headers.

CloudFlare 1. for absolute-URI, rewrite to path;
2. forward the first recognized Host header.

CloudFront 1. for absolute-URI, rewrite to path;
2. remove all recognized Host headers, add a new Host header using forwarding destination before original
headers;
3. forward space-preceded Host headers under certain conditions.

Fastly 1. for absolute-URI with HTTP schema, rewrite to path; for other schemas, forward as-is.

Firewall

Bitdefender 1. for absolute-URI, forward as-is;
ESET 1. forward the original request as-is

Huawei 1. forward the original request as-is
Kaspersky 1. forward the original request as-is

OS X 1. forward the original request as-is
PAN 1. forward the original request as-is

Windows 1. forward the original request as-is

Table 4: Host forwarding behaviours that can potentially lead to inconsistent interpretation of host with downstream.

cern. To assess how deployed transparent caches handle re-
quests with ambiguous Host headers and whether or not
they make end-users vulnerable, we conducted two large-
scale measurement experiments on the Internet using Flash
applet. We executed our test cases by purchasing on-line
Flash advertisements and obtaining a Flash hosting service
on a live website, thus allowing our test Flash applet to run
about one million times worldwide.

5.1 Experiments Setup
In both experiments, we set up two web servers (namely

servers I and II respectively) and three domains (namely
domains A, B, and C respectively). Domain A and B are
hosted on server I, and domain C hosted on server II. We
design 16 different test cases to study co-hosting cache poi-
soning and general cache poisoning, and implement all the
test cases using a Flash applet.

The first 11 test cases using the three testing techniques
presented in Section 3 are designed to detect transparent
caches vulnerable to co-hosting cache poisoning. For each
test case, we craft an ambiguous host definition using do-
main A and B, and send 5 requests with the ambiguous
host definition to server I. We then issue one normal fetches
to domain A and domain B to server I respectively. For

each request, we embed a unique sequence number, which
is also returned in a cache-able response by server I. If a
received response has a sequence number different from the
one included in a corresponding request, it indicates that
the response is from a cache. The sequence number in the
response also tells us which request triggers caching. We
flag a vulnerable transparent cache if both two conditions
hold: 1) a response to an ambiguous request is cached and
the cached content is later fetched by a normal request; and
2) the forwarded request of the ambiguous request received
by server I could be interpreted differently than the normal
fetch that hits the cache. Figure 3 illustrates a simplified
example to detect vulnerable transparent cache shown in
Figure 1(d). We first send a request with ambiguous host
definition and sequence number “1”. Server I receives the
(forwarded) request and responds with the sequence num-
ber. After sending 5 requests with the same ambiguous host,
we issue a normal request with host “A” and sequence num-
ber “6”. Because we see a response of sequence number “1”
for the normal request, we know that a cache is present
between the testing Flash and server I, and the cache iden-
tifies the ambiguous request as“A”. Because the first request
received by server I still has ambiguous host, we conclude
that the cache is subject to co-hosting cache poisoning with

Downstream

Upstream Reverse Proxy CDN Server

A
p
a
ch

e

II
S

L
ig

h
tt

p
d

L
it

e
S
p

e
e
d

N
g
in

x

S
q
u
id

V
a
rn

is
h

A
k
a
m

a
i

A
li
b
a
b
a

A
z
u
re

C
lo

u
d
F

la
re

C
lo

u
d
F
ro

n
t

F
a
st

ly

L
e
v
e
l3

T
e
n
c
e
n
t

A
p
a
ch

e

II
S

L
ig

h
tt

p
d

L
it

e
S
p

e
e
d

N
g
in

x

T
o
m

c
a
t

Transparent
Cache

ATS 3 3 3 3 3
Squid 3 3 3

Forward
Proxy

Apache 3
Squid 3 3 3

Reverse
Proxy

Apache — — — — — — — —
Lighttpd 3 3 — — — — — — — — 3 3
LiteSpeed 3 3 3 3 — — — — — — — — 3 3 3 3

Squid 3 — — — — — — — —
Varnish 3 3 3 3 — — — — — — — — 3 3 3 3 3

CDN

Akamai 3 —
Alibaba 3 3 3 — 3

CloudFlare 3 3 3 3 3 3 3 3 3 3 — 3 3 3 3 3 3 3 3 3 3
CloudFront — 3

Fastly 3 3 3 3 3 3 3 3 — 3 3 3 3 3 3

Firewall

Bitdefender 3
ESET 3

Huawei 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Kaspersky 3 3 3 3 3 3 3 3 3 3 3 3 3 3

OS X 3
PAN 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Windows 3

Table 5: “3”: upstream and downstream combinations where we can expose an inconsistent host interpretation.
“—”: combinations we believe are not of practical interest.
“ ”: Combination is consistent in interpreting the host.

Flash Transparent Cache Server I

GET http://A/clientID/caseID.js

 Host:B

SeqID:1

1

2-5

7

GET /clientID/caseID.js

 Host:B

SeqID:1

Host:A

Send the ambiguous request with sequence ID 2-5 seperately

Response with ID 1

6

Response with ID 7

GET /clientID/caseID.js

Host:A

SeqID:6

GET /clientID/caseID.js

Host:B

SeqID:7

Response with ID 1

Cache as http://A/

clientID/caseID.js

Figure 3: Illustration of detecting a transparent cache that
is vulnerable to the scenario shown in Figure 1(d).

upstreams (like Akamai) accepting the first white-space pre-
ceding Host header.

We use domain A and domain C to assess if general cache
poisoning is possible. Each test first issues an ambiguous
request to domain A hosted on server I for 5 times, followed
by two normal requests to domain C hosted on server II. Se-
quence numbers in requests and responses are also used to
detect caching behaviour. If a normal request is responded
with a cached content corresponding to a previous ambigu-
ous request, we know that a cache is present, which caches a
response from server I as a resource of domain C. Therefore
we conclude that the cache is vulnerable to general cache
poisoning. We design another 5 test cases to uncover such
transparent caches.

The testing starts when a client browser or other run-
time loads the Flash applet. We took great care in con-

structing our Flash applet to ensure there are no side effects
beyond caching our own elements. Although our requests
are non-compliant, they should not trigger any memory er-
ror or other conditions. And we do not attempt to perform
any other activity beyond simply checking whether we can
ambiguously cache data involving our own domains. For
privacy, we collected only properties typically disclosed by
browsers when viewing web pages (e.g. request headers, and
external IP addresses).

5.2 Result Analysis
We conducted two experiments using the same Flash ap-

plet. The first experiment was from December 11 2015 to
December 31 2015. We brought 1.5 million advertising im-
pressions with about $110 on the Bit-torrent PC client uTor-
rent, which distributes Flash advertisements as part of the
revenue model. Due to a server configuration change, we dis-
carded approximately 100K impressions. For the other 1.4
million impressions, we received testing results from 971,343
unique IP addresses, covering 228 countries and 12,631 dif-
ferent ASes. To increase the coverage of measurement in
China, we also hosted the testing Flash on a Chinese web-
site from March 11 2016 to March 31 2016. In the second
experiment, we received testing results from 175,375 unique
IP addresses, mostly in China. Figure 4 shows the geograph-
ical distribution of involved clients in two experiments.

In the first experiment, we identified transparent caches
from testing sessions of 16,168 IP addresses. Among them,
15,677 (96.9% of transparent caches) different IPs are vul-
nerable to at least one form of our cache poisoning attacks.
13,184 IP addresses are vulnerable to co-hosting cache poi-
soning, 4,259 IPs are vulnerable to general cache poisoning,
and some of them are vulnerable to both.

The second experiment detected that 1,331 (96.7%) out of
1,376 IP addresses behind transparent caches can be affected
by co-hosting cache poisoning. 6 are vulnerable to both co-
hosting cache poisoning and general cache poisoning.

Figure 4: The geographical distribution of client IP ad-
dresses involved in two experiments.

Server Vuln IP#
Reverse
Proxy

Vuln IP# CDN Vuln IP#

Apache 9075/201 Apache 9075/201 Akamai 12337/416
IIS 9075/200 IIS 9075/200 Alibaba 9749/202
Lighttpd 9075/199 Lighttpd 9075/199 Azure 9075/199
LiteSpeed 10319/199 LiteSpeed 10319/199 CloudFlare 9749/202
Nginx 9749/202 Nginx 9749/202 CloudFront 9749/202
Tomcat 9748/202 Squid 11378/415 Fastly 9091/201

Varnish 9068/199 Level3 9711/200
Tencent 9843/211

Table 6: The amount of IP addresses vulnerable to co-
hosting cache poisoning involving different upstreams in the
first and second experiment.

A transparent cache vulnerable to co-hosting cache poi-
soning may be exploited when connecting to one or more
specific co-hosting upstream servers. We looked into the
parsing, interpreting, and forwarding behaviours of the vul-
nerable transparent caches to find their potential “cooper-
ating” upstreams in the 21 implementations presented in
Table 5. Table 6 shows the number of vulnerable IP ad-
dresses for particular upstream configurations. From the
table, we can see that the number of potentially vulnera-
ble IP addresses is largest when the upstream is Akamai
(CDN), Squid (Reverser Proxy), LightSpeed (Reverse Proxy
and Server) and Tencent (CDN). The general reason is that
they are more liberal with requests with malformed hosts.
They do not reject multiple Host headers. They also accept
space before or after Host header, which is often transpar-
ently ignored by an in-path proxy. Thus, they are more
likely to be inconsistent with others and be attacked.

To look deeper at the number of vulnerable IP addresses
across different countries, we listed the top 10 countries in
which vulnerable IP addresses in two experiments are dis-
tributed, as shown in Figure 5. In this process, we can see
that India has the largest number of vulnerable IP addresses,
closely followed by the Philippines and Brazil. Apart from
that, the amount of IP addresses vulnerable to co-hosting
cache poisoning is larger than that of general cache poison-
ing in most countries, except Philippines. Combined with
Table 7, we observed that most vulnerable IP addresses in
some countries (such as India, Philippines, China and New
Zealand) are concentrated in several ASes.

One limitation with our testing is that our Flash applet is
primarily run in a Windows BitTorrent client that is used by
the advertising service we purchased. Since most users likely
do not run BitTorrent clients over usage-billed and band-
width limited cellular networks, our tests primarily cover
transparent caches on the fixed Internet, with very limited

Figure 5: Top 10 vulnerable IPs sorted by Country

Country ASN Organization #

PH 9299 Philippine Long Distance Telephone 2396
IN 23860 Alliance Broadband Service 1234
IN 24309 Atria Convergence Technologies 1013
CN 56046 China Mobile 692
CN 9808 China Mobile 476
PH 132199 Globe Telecom 429
NZ 9790 CallPlus Services Limited 410
NZ 7657 Vodafone NZ Ltd. 377
US 3651 Sprint 317
SA 35819 Etihad Etisalat Company (Mobily) 302

Table 7: Top 10 vulnerable IPs sorted by ASN

coverage of cellular network from the mobile users of our
Flashing hosting website.

Regardless of visibility concerns, this survey does confirm
an unfortunate fact: almost all caches we measured were
vulnerable to at least one cache poisoning scenario.

5.3 Case Study
In the process of analysing the measurement results, we

found several vulnerable IP addresses located in National
University of Singapore (NUS). These IP addresses are vul-
nerable to both co-hosting cache poisoning and general cache
poisoning. To validate our results, we performed our test
cases from a Planetlab node in NUS campus network manu-
ally, and verified with browser to confirm that NUS campus
network deployed commercial transparent caches and was
indeed vulnerable to the two cache poisoning attacks. We
reported these vulnerabilities to Computer Center of NUS,
and got confirmation from them.

6. NOTIFICATION AND RESPONSE
We made attempt to contact both CERT/CC and indi-

vidual vendors. CERT/CC has acknowledged our report
and assigned a VU number (#916855) to track this prob-
lem. Currently we have successfully contacted 13 individual
vendors, and their responses are summarized in below.

6.1 Cache Poisoning Attacks
Squid: Our report to the Squid team resulted in two

public security update advisories (CVE-2016-4553 [24] and
CVE-2016-4554 [25]). For the general cache poisoning at-
tack affecting both Squid3 and Squid4, the Squid team eval-
uated it as the highest level (Blocker) of security vulnera-
bility and fixed it in version 3.5.18 and 4.0.10. For the co-

hosting attack, they said the vulnerability was introduced
into Squid 1.0 in 1996 and modified Squid3 to not accept
space-preceding Host headers (versus concatenating it with
the preceding header). However, they are not considering
fixing the problem in Squid4, since Squid4 does not accept
but simply ignore space-preceding Host headers. We pointed
out that Squid4 still forward space-preceding Host headers,
which may be accepted by an upstream. They suggest that
it is up to an upstream service provider (such as Akamai) to
make their own implementation compliant with RFC 7230.
They also suggest that our exploitation methods could also
be applied to some other headers (such as Content-Length) to
re-enable related attacks such as HTTP request smuggling
attacks.

Akamai: We reported this problem to Akamai, which
has confirmed that our exploitation methods are effective in
cache poisoning. They mentioned that our report sparked
considerable internal discussion and debate. They have de-
ployed a solution to defend against this problem.

Alibaba: Alibaba confirmed the attacks in our report
and have modified their servers to mitigate these attacks
immediately after our report.

Tencent: Tencent confirmed that the attacks in our re-
port were valid and have fixed them at this time.

Apache Traffic Server: Apache Traffic Server acknowl-
edged and confirmed the attack in our report. But they did
not tell us whether they will fix it.

6.2 Filtering Bypass
Palo Alto Networks: Palo Alto Networks took our re-

port seriously, and invited us to have a face-to-face discus-
sion. They said the diversity behaviours of different web
servers were out of their expectation. They expressed con-
cerns of false positives for enforcing a strict HTTP compli-
ance, because of the diversity of real world traffic. They are
willing to add extra options in their future release for cus-
tomers to determine whether or not to block the ambiguous
requests we reported.

Huawei: Huawei immediately formed a team to work on
this issue and confirmed the problem. They also invited us
to a face-to-face meeting to discuss it further. They would
provide options for their customers to enforce strict RFC
7230 compliance.

ESET: ESET confirmed the attacks and were fixing it.
They offered several T-shirts and a hard copy of the ac-
knowledgement as a token of gratitude.

CloudFlare: CloudFlare acknowledged our report, and
had a detailed discussion with us about its implications.
They are working a fix at this time.

Fastly: Fastly discussed with us, and acknowledged that
the problem could be an issue under certain conditions.

Kaspersky: Kaspersky confirmed the exploits to bypass
their parental control feature. But they think it is not criti-
cal because it requires specific software installation which is
not available for a child at properly configured OS.

Microsoft: Microsoft thinks it is a product-related bug
rather than a security vulnerability.

7. DISCUSSION

7.1 Mitigation
Strictly speaking, this is an implementation problem rather

than a specification problem. While RFC 2616 has some

ambiguities in the handling of Host, RFC 7230 is gener-
ally strict and clear. Therefore, we recommend that ven-
dors including both downstream and upstream, fully comply
with RFC 7230 to avoid problems arising due to inconsistent
Host interpretations. Per RFC 7230, the correct approach is
to treat multiple Host headers and whitespace around field
names as errors.

We have seen false positive concerns from some firewall
vendors. We suggest that firewall vendors with such con-
cerns could provide options for their customers to enforce
strict RFC 7230 compliance, rejecting or alerting any in-
valid requests. As we believe that multiple host ambiguities
should not be present in any benign request, we encour-
age vendors with false positive concerns to collect real-world
statistics. If the real-world data support our hypothesis,
vendors should enable full compliance as default.

Apart from the HTTP implementations studied in this pa-
per, these problems related to Host headers could also affect
other systems and/or manifest in other forms. We recom-
mend that developers of any deployed system that processes
HTTP requests with a notion of an associated host should
review their implementations with this threat in mind.

We anticipate a long period for the deployed devices to
get patched, because of the prevalence of affected systems.
Websites can mitigate the effects of vulnerable transparent
caches by deploying HTTPS with HTTP Strict Transport
Security (HSTS) [9], preferably with preloading. HTTPS
with HSTS prevents clients from issuing plaintext HTTP
requests, therefore avoids the clients being attacked by poi-
soned transparent caches because the caches are usually not
capable to intercept encrypted traffic.

To aid in identifying Host of Troubles issues, we have
consolidated the attack techniques into an online checking
tool, 3 which helps client users and ISP operators to auto-
matically evaluate whether their network are vulnerable to
the cache poisoning attacks we found.

7.2 Protocol Design and Implementation
Our study underscores an unfortunate fact: most HTTP

implementations lack full compliance with RFC 7230. While
some factors, such as backward compatibility, may contribute
to this fact, our experience suggests that the presentation of
RFC 7230 regarding how to treat Host headers could be im-
proved. In particular, we argue for the benefit of providing a
thoroughly reviewed reference implementation, for two rea-
sons. First, currently Host-related rules appear in multiple
places; a reference implementation would help to aggregate
them together for consideration in a single place. Second,
specifications written in natural language inevitably intro-
duce ambiguities, due to either the wording itself, or from
the incomplete understanding of implementers. A reference
implementation would help address both considerations.

Some implementation ambiguities we examined relate to
the protocol design of HTTP. In particular, the redundant
semantics of Host and the host component in URLs intro-
duces the possibility of ambiguities. While a strict specifica-
tion can clarify and regulate protocol fields with redundant
semantics, problems often arise when implementations do
not fully comply with the specification, as demonstrated in
this study. In general, when designing protocols we should
be careful to avoid introducing opportunities for overlap-
ping and potentially conflicting semantics in protocol fields,

3https://hostoftroubles.com/online-checker.html

rather than attempting to resolve such issues by specifica-
tion rules.

Another protocol design perspective highlighted by this
problem is that the correct origin and context association
of HTTP messages depends on consistent states between
multiple parties, and does so without incorporating addi-
tional error-detection/recovery mechanisms. Such design
can prove fragile in the face of attacks that exploit ambi-
guities caused by implementation imprecision. Some proto-
col enhancements could make HTTP more resilient to origin
confusion attacks. For example, adding a cryptographically
verifiable origin to HTTP responses would help to detect po-
tential origin confusions. However, the effectiveness of such
enhancements would still rely on correct implementation.

Our study highlights the gap between protocol specifica-
tion and implementation, especially when a protocol keeps
evolving. Community efforts beyond IETF working groups
focused on standardization would help to reach more imple-
menters and to increase the awareness of important protocol
changes. For example, for a number of years the IETF had
a working group (TCP-IMPL) chartered specifically to dis-
cuss TCP implementation issues, rather than to standardize
aspects of TCP.

Finally, the Host of Troubles vulnerabilities highlight a
fundamental tension underlying Postel’s robustness princi-
ple. Protocol implementations being liberal in what they
accept has great utility in facilitating unfettered connectiv-
ity between trusted parties; but in adversarial situations, it
opens the floodgates to myriad potentially exploitable am-
biguities. While protocol designers may be aware of these
limitations of the robustness principle [26], our study shows
that implementers still largely overlook its hazardous impli-
cations.

8. RELATED WORK
Some have developed abusive uses of untrustworthy Host

header to exploit insufficient input validation in web appli-
cations [1, 12], The consequence can be phishing, cross-site
scripting, etc. The cause of these attacks is that web appli-
cations misuse host-related variables passed by their fron-
tend HTTP implementations that parse and interpret raw
HTTP requests. Broadly speaking, these attacks are also
exploitations of semantic inconsistency of the HTTP host.
The difference between our work and these attacks is that in
our work the semantic inconsistency is caused by discrepan-
cies in parsing and interpreting of raw HTTP request, while
in those attacks, the semantic inconsistency is caused by dif-
ferent assumptions of host-related variables between a caller
and a callee. Kettle also briefly sketched different handling
of multiple Host headers in different implementations [12].
Our work fleshes out his sketch with a variety of multiple
host ambiguities and an in-depth empirical study.

Inconsistent host interpretations between different parties
can have disastrous consequences, because hosts provide the
basis in HTTP environments for isolating different security
domains. Delignat-Lavaud and Bhargavan showed that host
confusion and consequent isolation violations can also occur
due to operation and configuration defects, especially in en-
vironments involving HTTPS [3].

The general cache poisoning attack we found has roots in
a particular implementation problem faced by transparent
caches. Upon receiving a request, a transparent cache needs
to decide whether to directly forward the request to the des-

tination IP address of its underlying TCP connection, or
to initiate a new connection to the host in the request. If
the transparent cache chooses the former, and caches the
response without further checks, it becomes subject to gen-
eral cache poisoning by requests that specify arbitrary hosts.
The latter choice, unless coupled with further protection,
can result in the abuse of the transparent cache’s IP ad-
dress to probe internal websites that can only be reached
through the transparent cache. The latter problem has been
reported as CERT VU#435052 [7]. Huang et al [10] used
Adobe Flash and a Java applet to measure the prevalence
of both vulnerabilities in the real world. Squid chose the
former implementation approach, with an additional consis-
tency check comparing the destination IP address with the
claimed host to avoid cache poisoning. But the inconsistent
notion of host within its internal modules allows us to bypass
this check using requests with multiple hosts.

Our Host of Troubles attacks belongs to a family of “se-
mantic gap” attacks [11] that exploit the difference in in-
terpreting an object by two or more parties. Some other
semantic gap attacks have been identified in HTTP imple-
mentations, such as HTTP “request smuggling” attacks [15].
The attacks we found differ from request smuggling in that
our attacks exploit discrepancies in the host definition of one
request to create host confusion, while request smuggling
takes advantage of implementation differences in Content-
Length to induce inconsistencies in request-response asso-
ciation. In general, semantic gap attacks are difficult to
enumerate, and identifying one vector does not necessar-
ily shed light on other potential vectors. Our study shows
that the defenses against request smuggling attacks do not
help prevent Host of Troubles attacks, despite their concep-
tual similarity. In fact, some vendors expressed concerns
that the use of whitespace in Host of Troubles attacks may
also apply to Content-Length manipulation to re-enable re-
quest smuggling attacks. Another form of semantic gap at-
tack, HTTP Evader [27], exploits ambiguities in parsing re-
sponses to evade anti-virus firewalls, and Ristic presented
a number of techniques to bypass web application firewall
(WAF) rules [22]. Other examples include manipulations of
IP packets [20, 21, 8, 29, 13, 16], files [11, 17, 18], and other
operating system resources [23].

Vulnerable proxies such as transparent caches are the most
significant threat exposed in this work. Weaver et al [30]
used Netalyzr [14] to discover the presence of proxies on the
Internet. Their results show that a significant fraction of
end user HTTP traffic goes through proxies. Xu et al [31]
studied a number of behaviors of web proxies in cellular net-
works, including caching, content rewriting, and redirection,
among others. Their results indicate that all four US car-
riers they tested deploy web proxies, albeit with different
behaviors. Both studies could serve evidence that the real
world impact by Host of Troubles could be significant due
to the prevalence of proxy deployment.

9. CONCLUSION
While Postel’s robustness principle can greatly facilitate

unfettered connectivity between trusted parties, the ambigu-
ities it tends to introduce in Internet implementations can
prove detrimental to security in adversarial environments.
We present a class of attacks, “Host of Troubles”, that lever-
age ambiguous interpretations of HTTP’s Host header to
enable cache poisoning attacks and security policy bypasses.

The root cause lies in implementations that, contrary to
RFC 7230, inconsistently parse and interpret the Host header
and related information in request-URIs.

Attackers can exploit this problem by carefully crafting
HTTP requests with ambiguous host information, inducing
inconsistent interpretations between two parties, with vary-
ing consequences depending on the particular scenario. We
examined 33 popular HTTP implementations and found a
number of interpretation inconsistencies that attackers can
exploit, generally by chaining together incompatible inter-
pretations. By conducting two large-scale measurements,
we show that around 97% of users served by transparent
caches are affected by the cache poisoning attacks we found.

Our work underscores the importance of standard com-
pliance. It also shows the consequence of implementations
guided by the robustness principle without also incorporat-
ing thorough security considerations.

10. ACKNOWLEDGMENTS
We especially thank Ouyang Xin, Wei Xu, Zhi Xu, Jiangxia

Liu from Palo Alto Networks, Shiguang Li from Huawei for
valueable discussion. We also thank Amos Jeffries from
Squid, Nick Sullivan and Evan Johnson from CloudFlare,
Daniel McCarney and Jonathan Foote from Fastly and Mike
Kun from Akamai for their helpful comments and feedback.
We are grateful to the anonymous reviewers, and Jinjin
Liang, Xiaofeng Zheng, Baojun Liu, Kun Du, and Kai Zhang
for suggestions and feedback. This work was funded by
Tsinghua National Laboratory for Information Science and
Technology (TNList) Academic Exchange Foundation, Nat-
ural Science Foundation of China (grant #61472215) and
was also partially supported by the US National Science
Foundation under grant CNS-1237265, and by generous sup-
port from Google and IBM. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of their employers or the funding agencies.

11. REFERENCES
[1] Bueno, C. HTTP Cache Poisoning via Host Header Injection.

http://carlos.bueno.org/2008/06/host-header-injection.html,
June 2008.

[2] Chen, J., Jiang, J., Zheng, X., Duan, H., Liang, J., Li, K., Wan,
T., and Paxson, V. Forwarding-Loop Attacks in Content
Delivery Networks. In Proceedings of the 23st Annual Network
and Distributed System Security Symposium (NDSS’16)
(2016).

[3] Delignat-Lavaud, A., and Bhargavan, K. Network-based origin
confusion attacks against https virtual hosting. In Proceedings
of the 24th International Conference on World Wide Web
(New York, NY, USA, 2015), WWW ’15, ACM, pp. 227–237.

[4] Durumeric, Z., Wustrow, E., and Halderman, J. A. ZMap:
Fast Internet-wide Scanning and Its Security Applications. In
Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13) (Washington, D.C., 2013), USENIX,
pp. 605–620.

[5] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Obsoleted
by RFCs 7230, 7231, 7232, 7233, 7234, 7235, updated by RFCs
2817, 5785, 6266, 6585.

[6] Fielding, R., and Reschke, J. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. RFC 7230
(Proposed Standard), June 2014.

[7] Giobbi, R. Vulnerability Note VU#435052: Intercepting Proxy
Servers may Incorrectly Rely on HTTP Headers to Make
Connections. http://www.kb.cert.org/vuls/id/435052, February
2009.

[8] Handley, M., Paxson, V., and Kreibich, C. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics. In USENIX Security (2001).

[9] Hodges, J., Jackson, C., and Barth, A. HTTP Strict Transport
Security (HSTS). RFC 6797 (Proposed Standard), Nov. 2012.

[10] Huang, L.-S., Chen, E. Y., Barth, A., Rescorla, E., and
Jackson, C. Talking to Yourself for Fun and Profit. Proceedings
of W2SP (2011), 1–11.

[11] Jana, S., and Shmatikov, V. Abusing File Processing in
Malware Detectors for Fun and Profit. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2012), SP ’12, IEEE Computer Society, pp. 80–94.

[12] Kettle, J. Practical HTTP Host Header Attacks.
http://www.skeletonscribe.net/2013/05/
practical-http-host-header-attacks.html, May 2013.

[13] Korhonen, E. Advanced Evasion Techniques - Measuring the
Threat Detection Capabilities of Up-to-Date Network Security
Devices. Master’s Thesis (08 2012).

[14] Kreibich, C., Weaver, N., Nechaev, B., and Paxson, V.
Netalyzr: Illuminating The Edge Network. In Proceedings of
the 10th ACM SIGCOMM conference on Internet
measurement (2010), ACM, pp. 246–259.

[15] Linhart, C., Klein, A., Heled, R., and Orrin, S. HTTP Request
Smuggling. Computer Security Journal 22, 1 (2006), 13.

[16] Niemi, O.-P., and Levomäki, A. Evading Deep Inspection for
Fun and Shell. Black Hat USA (2013).

[17] Oberheide, J., Bailey, M., and Jahanian, F. PolyPack: an
Automated Online Packing Service for Optimal Antivirus
Evasion. In Proceedings of the 3rd USENIX conference on
Offensive technologies (2009), USENIX Association, pp. 9–9.

[18] Porst, S. How to Really Obfuscate your PDF Malware.
RECON, July (2010).

[19] Postel, J. Transmission Control Protocol. RFC 793
(INTERNET STANDARD), Sept. 1981. Updated by RFCs
1122, 3168, 6093, 6528.

[20] Ptacek, T. H., and Newsham, T. N. Insertion, Evasion, and
Denial of service: Eluding Network Intrusion Detection. Tech.
rep., DTIC Document, 1998.

[21] Puppy, R. F. A Look at Whisker’s Anti-IDS Tactics. Online (12
1999).

[22] Ristic, I. Protocol-level evasion of web application firewalls.
Black Hat USA (2012).

[23] Su, Z., and Wassermann, G. The Essence of Command
Injection Attacks in Web Applications. In ACM SIGPLAN
Notices (2006), vol. 41, ACM, pp. 372–382.

[24] Team, S. Squid Proxy Cache Security Update Advisory
SQUID-2016:7.
http://www.squid-cache.org/Advisories/SQUID-2016 7.txt,
May 2016.

[25] Team, S. Squid Proxy Cache Security Update Advisory
SQUID-2016:8.
http://www.squid-cache.org/Advisories/SQUID-2016 8.txt,
May 2016.

[26] Thomson, M. The Harmful Consequences of Postel’s Maxim.
https:
//tools.ietf.org/html/draft-thomson-postel-was-wrong-00,
March 2015.

[27] Ullrich, S. HTTP Evader - Automate Firewall Evasion Tests.
http://noxxi.de/research/http-evader.html.

[28] Vissers, T., Van Goethem, T., Joosen, W., and Nikiforakis, N.
Maneuvering Around Clouds: Bypassing Cloud-based Security
Providers. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security
(2015), ACM, pp. 1530–1541.

[29] Vutukuru, M., Balakrishnan, H., and Paxson, V. Efficient and
Robust TCP Stream Normalization. In Security and Privacy,
2008. SP 2008. IEEE Symposium on (2008), IEEE,
pp. 96–110.

[30] Weaver, N., Kreibich, C., Dam, M., and Paxson, V. Here Be
Web Proxies. In Proceedings of the 15th International
Conference on Passive and Active Measurement (New York,
NY, USA, 2014).

[31] Xu, X., Jiang, Y., Flach, T., Katz-Bassett, E., Choffnes, D.,
and Govindan, R. Investigating Transparent Web Proxies in
Cellular Networks. In Passive and Active Measurement (2015),
Springer, pp. 262–276.

