
Host of Troubles: Multiple Host Ambiguities
in HTTP Implementations

Jianjun Chen, Jian Jiang, Haixin Duan,
Nicholas Weaver, Tao Wan, Vern Paxson

1

Multiparty interactions in current Internet

Ambiguity between different parties could cause security
problems.

Browser WebsiteForward
Proxy

IDS

Transparent
Cache

CDN Firewall

2

Previous works about ambiguity

• HTTP request smuggling [Linhart 2005]
• Exploiting ambiguity of Content-Length header

• HTTP Evader [Ullrich 2013]
• Exploits multiple ambiguities of HTTP response headers

(Content-Encoding .etc)

• Host header attacks [Kettle 2013]
• Exploiting insufficient input validation of host-related

variables in web applications
• Leading to phishing, cross-site scripting.

3

Our work

• We present “Host of Troubles” attacks, that can cause
severe security consequences, such as cache poisoning
and filter bypass.
• 3 types of techniques

• We studied 33 popular HTTP implementations, and
identified a large range of potential exploits.

• We conducted a large scale measurement and found
that around 97% of Internet users served by a
transparent cache are subject to cache poisoning
attacks.

4

Outline

• Overview of HTTP Host header
• Three techniques leading to Host header ambiguity
• Five attacks exploiting Host header ambiguity
• Large scale measurement of transparent cache

poisoning
• Concluding remarks

5

How HTTP requests are processed

GET / HTTP/1.1\r\nHost: a.com\r\nUser-Agent:Mozilla…

GET / HTTP/1.1
host a.com
user-agent Mozilla
…

Further action

Text message

Protocol fields

Semantic structure

Parse

Interpret

6

Host – A critical HTTP field

Browser Forward
Proxy

IDSTransparent
Cache

CDN WebsiteFirewall

A.com

B.com

Identification

Routing

Caching

Routing
Caching

Locating

7

Ambiguity between different parties can cause disastrous
consequences

Outline

• Overview of HTTP Host header
• Three techniques leading to Host header ambiguity
• Five attacks exploiting host header ambiguity
• Large scale measure of transparent cache poisoning
• Concluding remarks

8

Technique 1: Multiple Host header

DownstreamClient Upstream

GET / HTTP/1.1
Host: a.com
Host: b.com

GET / HTTP/1.1
Host: a.com
Host: b.com

Host: a.com Host: b.com

HTTP standard (HTTP/1.1)
• RFC 2616 (obsoleted), implicitly requires rejection.
• RFC 7230 (latest), explicitly requires rejection.

9

How do implementations handle
requests with multiple Host header?

Implementation Preference Implementation Preference Implementation Preference

Apache Concatenate Akamai First Bitdefender First

IIS Reject Alibaba First ESET Last

Nginx First Azure Reject Huawei First

Tomcat First CloudFlare First Kaspersky First

ATS First CloudFront First OS X Concatenate

Squid First Fastly Reject PAN First

Varnish Reject Tencent Last Windows First

• Most implementations don’t follow RFC7230
• Some implementations are inconsistent with others

10

Technique 2: Space-surrounded
Host Header

DownstreamClient Upstream

GET / HTTP/1.1
Host: a.com

Host: b.com

GET / HTTP/1.1
Host: a.com

Host: b.com

(Treat space-preceded Host as Host)
Host: a.com

(Treat space-preceded as new header)
Host: b.com

Space-preceded Host
as first header

Other space-
preceded Host header

Space b/w Host
and ‘:’

RFC 2616 Reject (implicit) Line folding Recognize (implicit)
RFC 7230 Reject Reject Reject

HTTP standard

Space

11

⊔⊔

How implementations handle requests
with space-surrounded Host Header?

Space-preceded
Host as first
header

Other space-
preceded Host
header

Space-
succeeded
Host header

Server Apache Not recognize Line folding Recognize
IIS Recognize Line folding Recognize
Nginx Not recognize Not recognize Not recognize

Transparent
Cache

ATS Not recognize Not recognize Not recognize
Squid Recognize Recognize Recognize

CDN Akamai Recognize Recognize Recognize
Alibaba Not recognize Not recognize Not recognize
CloudFlare Not recognize Not recognize Not recognize
Tencent Recognize Recognize Recognize

Firewall Huawei Not recognize Not recognize Not recognize
PAN Not recognize Not recognize Not recognize

• Most implementations don’t follow RFC7230 and vary in processing
space-surrounded Host headers 12

Technique 3: Absolute-URI as
request-target

DownstreamClient Upstream

GET http://a.com/ HTTP/1.1
Host: b.com

GET http://a.com/ HTTP/1.1
Host: b.com

Host: a.com Host: b.com

DownstreamClient Upstream

GET nohttp://a.com/ HTTP/1.1
Host: b.com

GET nohttp://a.com/ HTTP/1.1
Host: b.com

Host: a.com Host: b.com 13

Technique 3: Absolute-URI as
request-target

Preference Schema
RFC 2616 Absolute-URI Not specified
RFC 7230 Absolute-URI Not specified

HTTP standard

HTTP implementations

• For preference between absolute uri and Host header
• Except Akamai�other implementations follow RFC

14

How do different implementations
handle absolute-URI?

Implementation Schema Implementation Scheme Implementation Scheme
Apache HTTP only Akamai HTTP/S Bitdefender any
IIS HTTP/S Alibaba any ESET any
Nginx any Azure HTTP/S Huawei any
Tomcat HTTP/S CloudFlare any Kaspersky any
ATS any CloudFront any OS X HTTP only
Squid HTTP only Fastly HTTP only PAN HTTP/S
Varnish HTTP only Tencent HTTP only Windows any

The space of Host ambiguity increases once again!

15

Outline

• Overview of HTTP Host header
• Three techniques leading to Host header ambiguity
• Five attacks exploiting host header ambiguity
• Large scale measure of transparent cache poisoning
• Concluding remarks

16

Attacks exploiting host ambiguity

• Cache poisoning Attacks
• Cache poisoning co-hosting website
• Cache poisoning co-CDN website
• Cache poisoning any HTTP website

• Bypass security policy
• Bypass firewall filtering policy
• Bypass WAF

17

Attack 1: Cache poisoning co-
hosting website

AkamaiAttacker Squid

GET / HTTP/1.1
Host: victim.com
Doesnt:matter
Host: attack.com

GET / HTTP/1.1
Doesnt:matter
Host: attack.com
Host: victim.com

Host: victim.com Host: attack.com

Requirement: co-hosting of attack.com and victim.com
Consequence: CDN cache poisoning

18

attack.com
victim.com

Attack 2: Cache poisoning co-CDN
website

Apache Traffic Server
(Transparent cache)

Attacker Akamai

GET / HTTP/1.1
Doesnt:matter
Host: attack.com
Host: victim.com

GET / HTTP/1.1
Doesnt:matter
Host: attack.com
Host: victim.com

Host: victim.com
Host: attack.com

19

attack.com
victim.com

Requirement: co-CDN of attack.com and victim.com
Consequence: transparent cache poisoning

Attack 3: Cache poisoning any HTTP website
(CVE-2016-4553)

Victim
User Attacker Squid

(Transparent cache)
Attack.com
IP:1.1.1.1

TCP connect 1.1.1.1
1

7malware

malware 4
cache as http://
victim.com

5GET / HTTP/1.1
Host: victim.com6

GET http://victim.com HTTP/1.1
Host:attack.com

2

20

attack.com ==
1.1.1.1? Yes!

3

Requirement: no condition for victim website
Consequence: transparent cache poisoning

Attack 4: Firewall bypass

ESET
(Firewall)

Attacker Nginx

GET / HTTP/1.1
Host: block.com
Host: allow.com

GET / HTTP/1.1
Host: block.com
Host: allow.com

Host: allow.com
Host: block.com

21

block.com

ESET firewall doesn’t allow client to visit block.com.

Attack 5: WAF bypass

CloudFlareAttacker Nginx

GET any://WAFallow.com HTTP/1.1
Host: WAFblock.com

GET / HTTP/1.1
Host: WAFblock.com

Host: WAFallow.com Host: WAFblock.com

22

WAFblock.com

CloudFlare customerWAFblock.com uses CloudFlare’s Web
Application Firewall(WAF) to block SQL injection attacks.

How Prevalent are Upstream/Downstream
vulnerabilities?

202 different combinations that could be exploited.

23

Outline

• Overview of HTTP Host header
• Three techniques leading to Host header ambiguity
• Attacks exploiting host header ambiguity
• Large scale measurement of transparent cache

poisoning
• Concluding remarks

24

Measurement set up

• Online Flash advertisement
• Testing environment set up

• 16 different test cases
• 11 of them to detect co-hosting cache poisoning
• 5 of them to detect general cache poisoning

25

Flash Ads
Internet

Our servers

Execution of test cases

• Utorrent PC advertising , 1.5M impressions, $110
• Hosted by a large website, 3/11/2016 to 3/31/2016

26
Geographical distribution of involved clients

Measurement results

• Utorrent ads
• 16,168 IPs detected ISP caches
• Among them, 15,677 (96.9%) IPs can be exploited

• Website ads
• 1,376 IPs detected ISP caches
• Among them, 1,331 (96.7%) IPs can be exploited

97% of users served by transparent caches could
have been poisoned.

27

Responsible disclosure

• Cache poisoning
• Squid� Fixed, CVE-2016-4553, CVE-2016-4554
• Akamai�Fixed
• Tencent�Fixed
• Alibaba�Fixed
• Apache Traffic Server�Confirmed

• Filter bypass
• Palo Alto Networks�add new option�Fixed
• Huawei�add new option�Fxied
• ESET�Fixed
• CloudFlare�Fixed
• Fastly�Fixing

28

Mitigation

• HTTP implementations should fully comply with RFC 7230 to
avoid inconsistent.
• treat multiple Host headers and white-spaces around field-names

as errors

•Websites can deploy HTTPS with pre-loaded HSTS to avoid
transparent cache.

29

• For end users, we provide an online tool to check if you are
vulnerable to transparent cache poisoning attacks.

•https://hostoftroubles.com/online-checker.html

• HTTP standard need to be precise and complete.

A test in my phone’s network

30

Discussion
• Limitations of Postel’s law

• “Be conservative in what you send, be liberal in what you accept”

• Specifications written in natural language inevitably
introduce ambiguities
• Provide reference implementations?

• When designing protocols, we should try to avoid
introducing overlapping semantics in protocol fields
• Rather than resolve such issues by specification rules

• Research Question: Is it possible to automate analysis
of consistency between implementation and standard?

31

Thank you�

32

Visit https://hostoftroubles.com to see demos.

http://hostoftroubles.com/

33

