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Abstract—Promotional infection is an attack in which the
adversary exploits a website’s weakness to inject illicit advertising
content. Detection of such an infection is challenging due to
its similarity to legitimate advertising activities. An interesting
observation we make in our research is that such an attack
almost always incurs a great semantic gap between the infected
domain (e.g., a university site) and the content it promotes
(e.g., selling cheap viagra). Exploiting this gap, we developed a
semantic-based technique, called Semantic Inconsistency Search
(SEISE), for efficient and accurate detection of the promotional
injections on sponsored top-level domains (sTLD) with explicit
semantic meanings. Our approach utilizes Natural Language
Processing (NLP) to identify the bad terms (those related to
illicit activities like fake drug selling, etc.) most irrelevant to an
sTLD’s semantics. These terms, which we call irrelevant bad terms
(IBTs), are used to query search engines under the sTLD for
suspicious domains. Through a semantic analysis on the results
page returned by the search engines, SEISE is able to detect
those truly infected sites and automatically collect new IBTs
from the titles/URLs/snippets of their search result items for
finding new infections. Running on 403 sTLDs with an initial 30
seed IBTs, SEISE analyzed 100K fully qualified domain names
(FQDN), and along the way automatically gathered nearly 600
IBTs. In the end, our approach detected 11K infected FQDN
with a false detection rate of 1.5% and over 90% coverage.
Our study shows that by effective detection of infected sTLDs,
the bar to promotion infections can be substantially raised,
since other non-sTLD vulnerable domains typically have much
lower Alexa ranks and are therefore much less attractive for
underground advertising. Our findings further bring to light the
stunning impacts of such promotional attacks, which compromise
FQDNs under 3% of .edu, .gov domains and over one thousand
gov.cn domains, including those of leading universities such as
stanford.edu, mit.edu, princeton.edu, havard.edu and government
institutes such as nsf.gov and nih.gov. We further demonstrate
the potential to extend our current technique to protect generic
domains such as .com and .org.

I. INTRODUCTION

Imagine that you google the following search term: site:
stanford.edu pharmacy. Figure 1 shows what we got on

October 9, 2015. Under the domain of Stanford University

are advertisements (ad) for selling cheap viagra! Using various

search terms, we also found the ads for prescription-free

viagra and other drugs under nidcr.nih.gov (National Institute

of Dental and Craniofacial Research), counterfeit luxury

handbag under dap.dau.mil (Defense Acquisition Portal), and

replica Rolex under nv.gov, the domain of the Nevada state

government. Clearly, all those FQDNs have been unauthorizedly

changed for promoting counterfeit or illicit products. This type

of attacks (exploiting a legitimate domain for underground

advertising) is called promotional infection in our research.

Promotional infection is an attack exploiting the weakness

of a website to promote content. It has been used to serve

various malicious online activities (e.g., black-hat search engine

optimization (SEO), site defacement, fake antivirus (AV)

promotion, Phishing) through various exploit channels (e.g.,

SQL injection, URL redirection attack and blog/forum Spam).

Unlike the attacks hiding malicious payloads (e.g., malware)

from the search engine crawler, such as a drive-by download

campaign, the promotional attacks never shy away from search

engines. Instead, their purpose sometimes is to leverage the

compromised domain’s reputation to boost the rank of the

promoted content (either what is directly displayed under the

domain or the doorway page pointed by the domain) in the

search results returned to the user when content-related terms

are included in her query. Such infections can inflict significant

harm on the compromised websites through loss in reputation,

search engine penalty, traffic hijacking and may even have legal

ramifications. They are also pervasive: as an example, a study

shows that over 80% doorway pages involved in black-hat SEO

are from injected domains [28].

Catching promotional infections: challenges. Even with the

prevalence of the promotional infections, they are surprisingly

elusive and difficult to catch. Those attacks often do not

cause automatic download of malware and therefore may not

be detected by virus scanners like VirusTotal and Microsoft

Forefront. Even the content injected into a compromised

website can appear perfectly normal, no difference from the

legitimate ads promoting similar products (e.g., drugs, red

wine, etc.), ideological and religious messages (e.g., cult theory

promotion) and others, unless its semantics has been carefully

examined under the context of the compromised site (e.g.,
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Fig. 1: Search findings of promotional injections in stanford.edu.
Search engine result is organized as title, URL and snippet.

selling red wine is unusual on a government’s website). So

far, detection of the promotional infections mostly relies on

the community effort, based upon the discoveries made by

human visitors (e.g., PhishTank [5]) or the integrity checks that

a compromised website’s owner performs. Although attempts

have been made to detect such attacks automatically, e.g.,

through a long term monitoring of changes in a website’s

DOM structure to identify anomalies [16] or through computer

vision techniques to recognize a web page’s visual change [17],

existing approaches are often inefficient (requiring long term

monitoring or analyzing the website’s visual effects) and less

effective, due to the complexity of the infections, which, for

example, can introduce a redirection URL indistinguishable

from a legitimate link or make injected content only visible to

the search engine.

Semantic inconsistency search. As mentioned earlier, fun-

damentally, promotional infections can only be captured by

analyzing the semantic meaning of web content and the

context in which they appear. To meet the demand for a large-

scale online scan, such a semantic analysis should also be

fully automated and highly efficient. Techniques of this type,

however, have never been studied before, possibly due to the

concern that a semantic-based approach tends to be complicated

and less accurate. In this paper, we report a design that makes a

big step forward on this direction, demonstrating it completely

possible to incorporate Natural Language Processing (NLP)

techniques into a lightweight security analysis for efficient and

accurate detection of promotional infections. A key observation

here is that for the attacks in Figure 1, inappropriate content

shows up in the domains with specific meanings: no one expects

that a .gov or .edu site promotes prohibited drugs, counterfeit

luxury handbags, replica watches, etc. Such inconsistency can

be immediately identified and located from the itemized search
result on a returned search result page, which includes the

title, URL and snippet for each result (as marked out in

Figure 1). This approach, which detects a compromised domain

(e.g., stanford.edu) based upon the inconsistency between the

domain’s semantics and the content of its result snippet reported

by a search engine with regard to some search terms, is

called semantic inconsistency search or simply SEISE. Our

current design of SEISE focuses on sponsored top-level domain
(sTLD) like .gov, .edu, .mil, etc., that has a sponsor (e.g., US

General Service Administration, EDUCAUSE, DoD Network

Information Center), represents a narrow community and carries

designated semantics (Section III-A). Later we show that the

technique has the potential to be extended to generic TLD

(gTLD, see Section V-B).
SEISE is designed to search for a set of strategically selected

irrelevant terms under an sTLD (e.g., .edu) to find out the

suspicious FQDNs (e.g., stanford.edu) associated with the

terms, and then further search under the domains and inspect the

snippets of the results before flagging them as compromised.

To make this approach work, a few technical issues need to be

addressed: (1) how to identify semantic inconsistency between

injected pages and the main content of a domain; (2) how to

control the false positives caused by the legitimate content

including the terms, e.g., a health center sites on Stanford

University (containing the irrelevant term “pharmacy”); (3)

how to gather the search terms related to diverse promotional

content. For the first issue, our approach starts with a small

set of manually selected terms popular in illicit activities (e.g.,

gambling, drug and adult) and runs a word embedding based

tool to calculate the semantic distance between these terms and

a set of keywords extracted from the sTLD’s search content,

which describe the sTLD’s semantics. Those most irrelevant

are utilized for detection (Section III-B). To suppress false

positives, our approach leverages the observation that similar

promotional content always appear on many different pages

under a compromised domain for the purpose of improving

the rank of the attack website pointed to by the content. As a

result, a search of the irrelevant term under the domain will

yield a result page on which many highly frequent terms (such

as “no prescription”, “low price” in the promotional content)

turn out to rarely occur across the generic content under the

same domain (e.g., stanford.edu). This is very different from

the situation, for example, when a research article mentions

viagra, since the article will not be scattered across many pages

under the site and tends to contain the terms also showing

up in the generic content under the Stanford domain, such as

“study”, “finding”, etc (Section III-B). Finally, using the terms

extracted from the result snippets of the sites detected, SEISE

further automatically expands the list of the search terms for

finding other attacks (Section III-C).
We implemented SEISE and evaluated its efficacy in our

research (Section IV). Using 30 seed terms and 403 sTLDs

(across 141 countries and 89 languages), our system automati-

cally analyzed 100K FQDNs and along the way, expanded the

keyword list to 597 terms. In the end, it reported 11K infected

FQDNs, which have been confirmed to be compromised1

through random sampling and manual validation. With its

low false detection rate (1.5%), SEISE also achieved over 90%

detection rate. Moving beyond sTLD, we further explore the

1Note that in line with the prior research [22], the term “compromise” here
refers to not only direct intrusion of a web domain, which was found to
be the most common cases in our research (80%, see Section VI), but also
posting of illicit advertising content onto the domain through exploiting its
weak (or lack of) input sanitization: e.g., blog/forum Spam and link Spam
(using exposed server-side scripts to dynamically generate promotion pages
under the legitimate domain).
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potential extension of the technique to gTLDs such as .com
(Section V-B). A preliminary design analyzes .com domains

using their site tag labeled by SimilarSites [8], which is found

to be pretty effective: achieving a false detection rate (FDR) of

9% when long keywords gathered from compromised sTLDs

are used.

Our findings. Looking into the promotional infections detected

by SEISE, we were surprised by what we found: for example,

about 3% (175) of .gov domains and 3% (246) of .edu
domains are injected; also around 2% of the 62,667 Chinese

government domains (.gov.cn) are contaminated with ads,

defacement content, Phishing, etc. Of particular interest is

a huge gambling campaign we discovered (Section V-C),

which covers about 800 sTLDs and 3000 gTLDs across

12 countries and regions (US, China, Taiwan, Hong Kong,

Singapore and others). Among the victims are 20 US academia

institutes such as nyu.edu, ucsd.edu, 5 government agencies like

va.gov, makinghomeaffordable.gov, together with 188 Chinese

universities and 510 Chinese government agencies. We even

recovered the attack toolkit used in the campaign, which

supports automatic site vulnerability scan, shell acquisition,

SEO page generation, etc. Also under California government’s

domain ca.gov, over one thousand promotion pages were

found, all pointing to the same online casino site. Another

campaign involves 102 US universities (mit.edu, princeton.edu,

stanford.edu, etc.), advertising “buy cheap essay”. The scope of

these attacks go beyond commercial advertising: we found that

12 Chinese government and university sites were vandalized

with the content for promoting Falun Gong. Given the large

number of compromised sites discovered, we first reported

the most high-impact findings to related parties (particularly

universities and government agencies) and will continue to do

so (Section VI).

Further, our measurement study shows that some sTLDs such

as .edu, .edu.cn and .gov.cn are less protected than the .com
domains with similar Alexa ranks, and therefore become soft

targets for promotional infections (Section V-B). By effectively

detecting the attacks on these sTLDs, SEISE raises the bar for

the adversary, who has to resort to less guarded gTLDs, which

typically have much lower Alexa ranks, making the attacks,

SEO in particular, less effective.

Contributions. The contributions of the paper are outlined as

follows:

• Efficient semantics-based detection of promotional infections.

We developed a novel technique that exploits the semantic

gap between domains (sTLDs in particular) and unauthorized

content they host to detect the compromised websites that serve

underground advertising. Our technique is highly effective,

incurring low false positives and negatives. Also importantly,

it is simple and efficient: often a compromised domain can

be detected by querying Google no more than 3 times. This

indicates that the technique can be easily scaled, with the help

of search providers.

• Measurement study and new findings. We performed a

large-scale measurement study on promotional infections, the

first of this kind. Our research brings to light several high-

impact, ongoing underground promotion campaigns, affecting

leading educational institutions and government agencies, and

the unique techniques the perpetrator employs. Further we

demonstrate the impacts of our innovation, which significantly

raises the bar to promotional infections and can potentially be

extended to protect generic domains.

Roadmap. The rest of the paper is organized as follows:

Section II provides background information for our study;

Section III elaborates on the design of SEISE; Section IV

reports the implementation details and evaluation of our

technique; Section V elaborates on our measurement study

and new findings; Section VI discusses the limitations of our

current design and potential future research; Section VII reviews

related prior research and Section VIII concludes the paper.

II. BACKGROUND

In this section, we lay out the background information of

our research, including the promotional infection, sTLD, NLP

and the assumptions we made.

Promotional infection. As mentioned earlier, promotion in-

fection is caused by exploiting the weakness of a website to

advertise some content. A typical form of such an attack is

black-hat SEO, a technique that improves the rank of certain

content on the results page by taking advantage of the way

search engines work, regardless of the guidelines they provide.

Such activities can happen on a dedicated host, for example,

through stuffing the pages with the popular search terms that

may not be related to the advertised content, for the purpose

of enhancing the chance for the user to find the pages. In

other cases, the perpetrator compromises a high-rank website

to post an ad pointing to the site hosting promoted content,

in an attempt to utilize the compromised site’s reputation to

make the content more visible to the user. This can also be

done when the site does not check the content uploaded there,

such as visitors’ comments, which causes its display of blog or

forum Spam. Such SEO approaches, the direct compromise and

the uploading of Spam ads, are considered to be promotional

infections. Different from the SEO on a dedicated host, these

approaches leverage a legitimate site and also provide their

ad-related keywords to the search engine crawler, to attract

targeted visitors.

The promotional infection can be used for multiple goals

such as malware distribution, phishing, blackhat SEO or

political agenda promotion. Black-hat SEO is often used

to advertise counterfeit or unauthorized products. The same

promotional tricks have also been played to get other malicious

content to the audience at which the adversary aims. Prominent

examples are Phishing websites that try to defraud the visitors

of their private information (user names, passwords, credit-

card numbers, etc.) and fake AV sites that cheat the user into

downloading malware.

Sponsored top-level domains. A sponsored top-level domain

(sTLD) is a specialized top-level domain that has private

agencies or organizations as its sponsors that establish and

enforce rules restricting the eligibility to use the domain based

on community theme concepts. For example, .aero is sponsored
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by SITA, which limits registrations to members of the air-

transport industry. Compared to unsponsored top-level domain

(gTLD), an sTLD typically carries designated semantics from

its sponsors. For example, as a sponsored TLD, .edu, which is

sponsored by EDUCAUSE, indicates that the corresponding

site is post-secondary institutions accredited by an agency

recognized by the U.S. Department of Education. Note that

sTLDs for different countries are also associated with specific

semantic meanings as stated in ICANN, e.g., edu.cn for Chinese

education institutions.

In our research, we collected sTLDs for different countries

according to the 10 categories provided by ICANN [9]: .aero,

.edu, .int, .jobs, .mil, .museum, .post, .gov, .travel, .xxx and the

public suffix list maintained by the Mozilla Foundation [6].

All together, we got 403 sTLDs from 141 countries.

Natural language processing. The semantics information

SEISE relies on is automatically extracted from web content

using Natural Language Processing. Technical advances in the

area has already made effective keyword identification and

sentence processing a reality. Below we briefly introduce the

key NLP techniques used in our research.

• Word embedding (skip-gram model). A word embedding

W : words→ V n is a parameterized function mapping words

to high-dimensional vectors (200 to 500 dimensions), e.g.,

W (‘education′) = (0.2,−0.4, 0.7, ...), to represent the word’s

relation with other words. Such a mapping can be done in

different ways, e.g., using the continual bag-of-words model

and the skip-gram technique to analyze the context in which

the words show up. Such a vector representation ensures that

synonyms are given similar vectors and antonyms are mapped to

dissimilar vectors. Also interestingly, the vector representations

fit well with our intuition about the semantic relations between

words: e.g., the vectors for the words ‘queen’, ‘king’, ‘man’ and

‘woman’ have the following relation: vqueen−vwoman+vman ≈
vking . In our research, we utilized the vectors to compare the

semantics meanings of different words, by measuring the cosine

distance between the vectors. For example, using Wikipedia

pages as a training set (for the context of individual words), our

approach automatically identified the words semantically-close

to ‘casino’, such as ‘gambling’ (with a cosine distance 0.35),

‘vegas’ (0.46) and ‘blackjack’ (0.48).

• Parts-of-speech (POS) tagging and phrase parsing. POS

tagging is a procedure of labeling a word in the text (corpus)

as corresponding to a particular part of speech as well as its

context (such as nouns and verbs). POS tagging accepts the text

as input and outputs the words labeling with POS such as noun,

verb, adjective, etc. Phrase parsing is the technique to divide

sentences into phrases that logically belong together. Phrase

parsing accepts texts as input and outputs a series of phrases in

the texts. The state-of-the-art POS tagging and phrase parsing

techniques can achieve over 90% accuracy [20], [32], [26]. POS

tagging and phrase parsing can be used in the content term
extraction, i.e., determining important terms within a given

piece of text. Specifically, after parsing phrases from the given

content, POS tagger helps to tag the terminological candidates,
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Fig. 2: Overview of the SEISE infrastructure.

such as syntactically plausible terminological noun phrases.

Then, the terminological candidates are further analyzed using

statistical approaches (e.g., point-wise mutual information) to

determine important terms.

Adversary model. In our research, we consider the adversary

who tries to exploit legitimate websites for promoting unau-

thorized content. Examples of such content include unlicensed

online pharmacies, fake AV, counterfeit, politics agenda or

Phishing sites. For this purpose, the adversary could inject ads

or other content into the target sites to boost the search rank

of the content he promotes or use sTLD sites as redirectors to

monetize traffic.

III. SEISE: DESIGN

As mentioned earlier, promotional infections often do not

propagate malicious payloads (e.g., malware) directly and

instead only post ads or other content that legitimate websites

may also contain. This makes detection of such attacks

extremely difficult. In our research, we look at the problem

from a unique perspective, the inconsistency between the

malicious advertising content and the semantics of the website,

particularly, what is associated with different sTLDs. More

specifically, underlying SEISE are a suite of techniques that

search sTLDs (.edu, .gov, etc.) using irrelevant bad terms
(IBT) (the search terms unrelated to the sTLDs but heavily

involved in malicious activities like Spam, Phishing) to find

potentially infected FQDNs, analyze the context of the IBTs

under those FQDNs to remove false positives and leverage

detected infections to identify new search terms, automatically

expanding the IBT list. Below we elaborate on this design.

A. Overview

Architecture. Figure 2 illustrates the architecture of SEISE,

which includes Semantics Finder, Inconsistency Searcher,

Context Analyzer and IBT Collector. Semantics Finder takes

as its input a set of sTLDs, automatically identifying the

keywords that represent their semantics. These keywords are

compared with a seed set of IBTs to find the most irrelevant

terms. Such selected terms are then utilized by Inconsistency

Searcher to search related sTLDs for the FQDNs carrying

these terms. Under each detected FQDN, Context Analyzer
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further evaluates the context of discovered IBTs through

a differential analysis to determine whether after removing

stop words, i.e., the most common words like ‘the’ from

the context, frequently-used terms identified there (e.g., the

search result of site:stanford.edu pharmacy) become rare across

the generic content of the FQDN (e.g., the search result of

site:stanford.edu), which indicates that the FQDN has indeed

been compromised. Such FQDNs are reported by SEISE and

their snippets are used by IBT Collector to extract keywords.

Those with the largest semantic distance from the sTLDs are

added to the IBT list for detecting other infected FQDNs.

Example. To explain how SEISE works, let us take a look at

the example at the beginning of the paper (Figure 1). For the

sTLD .edu, SEISE first runs Semantics Finder to automatically

extract keywords to profile sTLD, e.g., “education”, “United

States” and “student”. In the meantime, a seed set of IBTs,

including “casino”, “pharmacy” and others, are converted into

vectors using the word-embedding technique. Their semantic

gap with the .edu sTLD is measured by calculating the cosine
distances between individual terms (like “pharmacy”) and the

sTLD keywords (such as “education”, “United States” and

“student”). It turns out that the terms like “pharmacy” are

among the most irrelevant (i.e., with a large distance with

.edu). It is then used to search Google under .edu, which shows

the FQDN stanford.edu hosting the content with the search

term. Under this FQDN, SEISE again searches for “pharmacy.”

The results page is presented in Figure 1. As we can see,

many search result items (for different URLs) contain same

topic words, similar snippet and even URL patterns, which are

typically caused by mass injection of unauthorized advertising

materials. These items form the context for the IBT “pharmacy”

in stanford.edu.

Our approach then converts the context (the result items)

found into a high-dimensional vector, with the frequency of

each word (except those common stop words like ‘she’, ‘does’,

etc.) as an element of the vector. The vector, considered to be

a representative of the context, then goes through a differential

analysis: it is compared with the vector of a reference, the

search results page of site:stanford.edu that describes the

generic content under the FQDN. The purpose is to find out

whether the context is compatible with the theme of the FQDN.

If the distance between them is large, then we know that

this FQDN hosts a large amount of similar text semantically

incompatible with its theme (i.e., most of the high frequent

words in the suspicious text, such as “viagra”, rarely appear

in the common content of the FQDN). Also given the fact

that such text is the context for the search terms irrelevant to

the sTLD of the current FQDN but popular in promotional

infections, we conclude that the FQDN stanford.edu is indeed

compromised.

Once an infection is detected, the terms extracted from

the context of “pharmacy” are then analyzed and those most

irrelevant to the semantics of .edu are added to the IBT list

for finding other compromised FQDNs. Examples of the terms

include “viagra”, “cialis”, and “tadalafil”. In addition to the

words, the URL pattern of the infection is then generalized to

detect other advertising targets (e.g., red wine) not included in

the initial IBT list (e.g., those for promoting illegal drugs). The

same technique can also be applied to find out compromised

gTLDs like the .com FQDNs involved in the same campaign.

B. Semantics-based Detection

In this section, we present the technical details for Semantics
Finder, Inconsistency Searcher and Context Analyzer.

Finding semantics for sTLDs. The first step of our approach

is to automatically build a semantic profile for an sTLD. Such

a profile is represented as a set of terms, which serve as an

input to the Inconsistency Searcher for choosing right IBTs.

For example, the semantic representation of the sTLD .edu.cn
could be “Chinese university”, “education”, “business school”,

etc. SEISE automatically identifies these terms from different

sources using a term extraction technique. Specifically, the

following two sources are currently utilized by our prototype:

• Wikipedia: the Wikipedia pages for sTLDs provide a

comprehensive summary of different sTLDs. For example, https:
//en.wikipedia.org/wiki/ .mil profiles the sTLD .mil, including

its sponsor (“DoD Information System Agency”), intended use

(“military entities”), registration restrictions (“tightly restricted

to eligible agencies”), etc. In our research, we ran a crawler

that collected the wiki pages for 80 sTLDs.

• Search results: the search results page for an sTLD query

(e.g., site:gov) lists high-profile websites under the sTLD. As

mentioned earlier, each search result includes a snippet of a

website, which offers a concise but high-quality description

of the website. Since the websites under the sTLD carry the

semantic information of the sTLD, such descriptions can be

used as another semantic source of the sTLD. Therefore,

our approach collected the search result pages of all 403

sTLDs using automatically-generated queries in the form of

“site:sTLD”, such as site:edu. From each result page, top 100

search results are picked up for constructing the related sTLD’s

semantic profile.

From such sTLD semantics sources, the Semantics Finder

runs a content term extraction tool to automatically gather

keywords from the sources. These keywords are supposed to

best summarize the topic of each source and therefore represent

the semantics of an sTLD. In our implementation, we utilized

an open-source tool topia.termextract [30] for this purpose.

From each keyword extracted, our approach further calculates

its frequency, which is assigned to the keyword as its weight.
All together, top 20 keywords are chosen for each sTLD as its

semantics profile.

A problem is that among all 403 sTLDs, 71 of them are

non-English ones, which include Chinese, Russian, French,

Arabic, etc., 89 languages altogether. Analyzing these sTLDs

in their native languages is complicated, due to the challenges

in processing these languages: for example, segmenting Chinese

characters into words is known to be hard [35]. To solve this

problem, we utilized Google Translate to convert the search

page of an non-English sTLD query into English and then

extract their English keywords. The approach was found to
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……..

……..

( 
   bookmarkportlet:10, viewhandler:10, 
   online:8, promoter:6, dealers:6,     
   gambling:5, slot:5, roulette: 5, 
   … 
   ics:0, student:0, university:0, 
   graduate:0, alumni:0, department:0,     
   association:0, credit:0, center:0, 
   … 
)

“url":"https://mysau3.arbor.edu/ICS/Portlets/ICS/bookmarkportlet/
viewhandler.ashx?id=913a2a91-8cd9-491a-aaae-7d4837b93fc0", 
"title":"Online Casino by DewaCasino.com: Live Casino Online ...”, 
"snippet":"DewaCasino is a promoter casino best online with live 
dealers reliable, Fair and is one of the largest in Asia today. Join!"

“url":"https://mysau3.arbor.edu/ICS/Portlets/ICS/bookmarkportlet/
viewhandler.ashx?
id=0d616a77-0d7b-4297-8350-4730797b5153", 
"title":"iGamble247.com :: Live Casino Online - Casino Agent”, 
"snippet":"Igamble247 is a promoter casino best online with live 
dealers reliable, Fair and is one of the largest in Asia today. Join!”

Query — site:mysau3.arbor.edu “casino”

Query — site:mysau3.arbor.edu

“url":"https://mysau3.arbor.edu/ics/Students/", 
"title":"Students - MySAU - Spring Arbor University”, 
"snippet":"To print a certificate (proof) of enrollment or order a 
transcript, go to the National Student Clearinghouse site."

“url":"https://mysau3.arbor.edu/ICS/Alumni/About_the_Association/
Default_Page.jnz", 
"title":"Default Page - MySAU - Spring Arbor University”, 
"snippet":"The Spring Arbor University Alumni Association exists to 
serve the University and its graduates by providing alumni with a 
continuing link among themselves and…”

( 
   bookmarkportlet:0, viewhandler:0, 
   online:0, promoter:0, dealers:0,     
   gambling:0, slot:0, roulette: 0, 
   … 
   ics:4, student:3, university:3, 
   graduate:3, alumni:2, department:2,     
   association:2, credit:2, center: 2, 
   … 
)

(a) Differential analysis of an injected site. Cosine distance = 0.97

……..

……..

(   
   class:4, education:3, course:3, 
   management:3, center:2,     
   professional:2, unit:2, university: 2, 
   … 
   snack:0, amentity:0, 
   … 
)

( 
   PLus:0, 
   … 
   education:4, program:3, university:3, 
   student:3, course:2, school:2,     
   training:2, center: 2, social:2, 
   …  
)

Query — site:www.unlv.edu “casino”

“url":"https://www.unlv.edu/igi/online-courses", 
"title":"Online Courses | International Gaming Institute | University 
of …”, 
"snippet":"New online casino management classes are currently 
being developed by the Center for Professional & Leadership 
Studies at UNLV (PLuS Center). Please visit ..."

“url":"https://www.unlv.edu/igi/casino-marketing", 
"title":"Casino Marketing for Industry Professionals | International 
…”, 
"snippet":"Accreditation. You can earn Continuing Education Units 
(CEUs) upon successful completion of any of our online casino 
management courses. Please contact..."

Query — site:www.unlv.edu

“url":"https://www.unlv.edu/socialwork", 
"title":"School of Social Work | University of Nevada, Las Vegas”, 
"snippet":"Behavioral Health Workforce Education and Training 
Program for Professionals. The UNLV School of Social Work, 
Masters Program has been awarded the…”

“url":"https://www.unlv.edu/studentunion", 
"title":"Student Union | University of Nevada, Las Vegas”, 
"snippet":"Welcome. The Student Union offers conveniences and 
amenities for everyone, whether you need to grab a snack, hold a 
meeting, or just have some fun.”

(b) Differential analysis of a non-injected site. Cosine distance = 0.14

Fig. 3: Differential analysis of an injected site and a non-injected site.

work effectively, capturing non-English promotional infections

(see Section V).

Searching for inconsistency. The Inconsistency Searcher is

designed to find out the IBTs with great semantic gaps with

a given sTLD, and use the terms to search the sTLD for

suspicious (potentially compromised) FQDNs. To this end, we

first selected a small set of seed IBTs as an input to the system.

These IBTs were collected from spam trigger word lists [13],

[14] and SEO competitive word list [15], which are popular

terms used in counterfeit medicine selling, online gambling

and Phishing. From those terms, the most irrelevant ones are

picked up for analyzing a given sTLD. Such terms are found

by comparing them with the semantics profile of the FQDN,

that is, the set of keywords output by the Semantics Finder.

Specifically, such a semantic comparison is performed by

SEISE using a word-embedding tool called word2vec [12],

a neural network that builds a vector representation for each

term by learning from the context in which the term occurs. In

our research, we utilized the English Wikipedia pages as the

context for each term to compute its vector and measure the

distance between two words using their vectors. In this way,

the IBTs irrelevant to a given sTLD can be found and used to

search under the FQDN for detecting the suspicious ones. The

approach works as follows:

•We downloaded all 30 GB Wikipedia pages and ran a program

to preprocess those pages by removing tables and images while

preserving their captions. Individual sentences on the pages

were further tokenized into terms using a phrase parser.

• Given an input term (an IBT or a keyword in the sTLD’s

semantics profile), our approach runs word2vec to train a

skip-gram model, which maps the term into a high-dimensional

vector 〈d1, d2, ...di, ...〉 to describes the term’s semantics. This

vector is generated from all the sentences involving the term,

with individual elements describing the term’s relations with

other terms in the same sentence across all such sentences in

the Wikipedia dataset.

• Given the vectors of an IBT and an sTLD keyword, our

approach measures the semantic distance between them by

calculating the cosine distance between their vectors. For

each IBT, its average distance to all the keywords is used to

determine its effectiveness in detecting promotional infections.

In our research, we found that when the distance becomes

0.6 (at least 20 terms are still there within our seed set) or

more, almost no compromised site is missing (see Figure 5(a) in

Section V). The IBTs selected according to such a threshold are

then sent to the search engine together with the sTLD through

the query site:sTLD+IBT (e.g.,site:edu casino). From the search

result page, top 100 items (URLs) are further inspected by

the Context Analyzer to determine whether related FQDNs

are indeed compromised, which is detailed in the followed

subsection.

As an example, again, let us look at Figure 3: in this case,

the IBT “casino” has a distance of 0.72 with regard to the

semantics of .edu and therefore was run under the sTLD; from

the search pages, top FQDNs, including mysau3.arbor.edu,

www.unlv.edu, were examined to detect compromised FQDNS.

Analyzing IBT context. As mentioned earlier, even the terms

most irrelevant to an sTLD could show up on some of its pages

for a legitimate reason. For example, the word ‘casino’ has a

significant semantic distance with the sTLD .edu, which does

not mean, however, that the .edu sites cannot carry a poster

about one’s travel to Las Vegas or a research article about a

study on the gambling industry. Actually, a direct search of the

term site:edu casino yields a result page with some of the items

being legitimate. To identify those compromised FQDNs, the

Context Analyzer automatically examines the individual FQDN

on the result page, using a differential analysis (Figure 2) to

detect those truly compromised.

More specifically, the differential analysis involves two

independent queries, one on the suspicious FQDN together

with the IBT (e.g., site:life.sunysb.edu casino) and the other on

the FQDN alone (e.g., site:life.sunysb.edu) whose results page

serves as the reference. The idea is based on the observation

that in a promotional infection, the adversary has to post

similar text on many different pages (sometimes pointing to

the same site) for promoting similar products or content. This

712712



��
���� 

����	

��
���


���������	
��� �
�����

�������������	
����
������

�������������	
����
������

�������������	
����
�������
��

�� ��������
����	���

����	��� 

�������������	
����


!�
�����	�
�� �����
!




"�
�������
�� �����










��

� ����	���

�	��� 

��
�����	�

������
��������


�	�
�� �����


Fig. 4: IBT SET Extension. The process to find IBTs in new category consists of five steps: Injected URLs are collected to find the injected
directory path (�). Then, the injected directory path is used as search keyword, i.e., site:www.lgma.ca.gov/play to list more search result
items (�). After fetching search result snippets(�), critical terms are extracted (�), and those that show semantics irrelevance are filtered for
clustering (�). Once a new cluster is formed, we manually check and label it with its semantics.

is necessary because the target site’s rank needs multiple

highly-ranked pages on the compromised site to promote.

The problem for such an attack is that the irrelevant content,

which is supposed to rarely appear under the FQDN, becomes

anomalously homogenous and pervasive under a specific IBT.

As a result, when we look at the search results of the IBT

under the FQDN, their URLs and snippets tend to carry the

words rarely showing up across the generic content (i.e., the

reference) with much higher frequencies than their accidental

occurrences under the FQDN. On the other hand, in the case of

legitimate content including the IBT, the search results (for the

IBT under the FQDN) will be much more diverse and the words

involved in the IBT’s context often appear on the reference

and are compatible with the generic content of the site; even

for the irrelevant terms in the context, their frequencies tend

to be much lower than those in the malicious context. This is

because it is unlikely that the term irrelevant to the theme of

the site accidentally appears in similar context across many

pages, which introduces an additional set of highly-frequent

irrelevant terms. As an example, let us look at Figure 3(a) that

shows a compromised FQDN and Figure 3(b) that illustrates a

legitimate FQDN. The highly-frequent words extracted from

the former under the IBT ‘casino’, such as ‘bookmarkporlet’,

‘dealers’, ‘slot’, never show up across the URLs and snippets of

the reference that represents the generic content of the FQDN

(the result of the query site:mysau3.arbor.edu). In contrast, a

query of the legitimate FQDN using the same IBT yields a

list of results whose URLs and snippets have highly diverse

content, with some of their words also included in the generic

content, such as ‘class’, ‘education’ and ‘university’, and most

others (except the IBT itself) occurring infrequently.

To compare the two search result pages for identifying the

truly compromised site, the Context Analyzer picks up top

10 search results from each query and converts them into a

high dimensional vector. Specifically, our approach focuses

on the URL and the content snippet for each result item.

We segment them into words using delimiters such as space,

comma, dash, etc., and remove stop words (those extremely

common words like ‘she’, ‘do’, etc.) using a stop word list [10].

In this way, each search item is tokenized and the frequency

of each token, across all 10 results is calculated to form a

vector V =< w0, w1, ...wi, ... >, where wi is the frequency

of a word corresponding to that position. For the two vectors

Vb (the search page under the IBT) and Vg (the reference, that

is, the search page of the FQND without the IBT), SEISE

calculates their Cosine distance: 1− Vb·Vg

‖Vb‖‖Vg‖ .

In Figure 3(a), the distance of the vector for the IBT ‘casino’

with the reference vector is 0.97. In Figure 3(b), where the

FQDN is not compromised, we see that the vector under the

IBT ‘casino’ is much closer to that of the reference, with a

distance of 0.14. In our research, we chose 0.9 as a threshold

to parameterize our system: whenever the Cosine distance

between the results of querying an FQDN under an IBT and

the reference of the FQDN goes above the threshold, the

Context Analyzer flags it as infected. This approach turns out

to be very effective, incurring almost no false positives, as

elaborated in Section IV.
Discussion. SEISE is carefully designed to work on search

result pages instead of the full content of individual FQDNs.

This is important because the design helps achieve not only high

performance but also high accuracy. Specifically, a semantic

analysis on a small amount of context information (title,

URL and snippet of a search result) is certainly much more

lightweight than that on the content of each web page. Also

interestingly, focusing on such context helps avoid the noise

introduced by the generic page content, since the snippet of

each search result is exactly the text surrounding an IBT, the

part of the web page most useful for analyzing the suspicious

content it contains. In other words, our approach leverages the

search engine to zoom in on the context of the IBT, ignoring

unrelated content on the same web page.

C. IBT SET Extension
A critical issue for the semantic-based detection is how to

obtain high-quality IBTs. Those terms need to be malicious

and irrelevant to the semantics of an sTLD. Also importantly,

they should be diverse, covering not only different keywords

the adversary may use in a specific category of promotional

infections, like unlicensed pharmacy, but also those associated

with the promotional activities in different categories, such

as gambling, fake product advertising, academic cheating, etc.

Such diversity is essential for the detection coverage SEISE

is capable of achieving, since a specific type of promotional
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attack (e.g., fake medicine) cannot be captured by a wrong

IBT (e.g., ‘gambling’).

As mentioned earlier, the seed IBT set used in our research

includes 30 terms, which were collected from several sources,

including spam trigger word lists [13], [14] and SEO competi-

tive word list [15]. These IBTs are associated with the attacks

such as blackhat SEO, fake AV and Phishing. To increase the

diversity of the set, SEISE expands it in a largely automated

way, both within one category and across different categories.

More specifically, our approach leverages NLP techniques to

gather new IBTs from the search items reported to contain

malicious content, and further cluster these IBTs to discover

new categories. Here we elaborate on this design.

Finding IBTs within a category. Once a compromised FQDN

has been identified using an IBT, the search results that lead

to the detection (for the query “site:FQDN+IBT”) can then

be used to find more terms within the IBT’s category. This

is because the result items are the context of the IBT, and

therefore include other bad terms related to the IBT. Specifically,

similar to the Semantics Finder, the IBT Collector runs the term

extraction tool on each result item, including its title, URL and

snippet, to gather the terms deemed important to the context of

the IBT. Such terms are further inspected, automatically, against

the semantics of an sTLD by measuring their average distances

with the keywords of the FQDN (that is, converting each of

them into a vector using word2vec and then calculating

the Cosine distance between two vectors). Those sufficiently

away from the FQDN’s semantics (with a distance above the

aforementioned threshold) are selected as IBTs.

Finding new categories. Extracting keywords from the context

of an IBT can only provide us with new terms in the same

category. To detect the infections in other categories, we have to

extend the IBT set to include the terms in other types of illicit

promotions. The question is how to capture new keywords such

as ‘prescription-free antibiotic’ that are distinguished from the

IBTs in the known category such as ‘gambling’, ‘casino’, etc. A

key observation we leveraged in our study is that the adversary

sometimes compromises an FQDN to perform multiple types

of advertising: depending on the search terms the user enters,

an infected website may provide different kinds of promotional

content, for drug, alcohol, gambling and others. Further the

ads serving such a purpose are often deposited under the same

directory, along the same path under a compromised FQDN.

This enables us to exploit the URL included in a contaminated

result item (as detected by SEISE) to find the promotional

materials unrelated to the context of the IBT in use.

Specifically, from each flagged FQDN, the IBT Collector

first picks up all the URLs leading to malicious content, and

from them, identifies the most commonly shared path under

the FQDN. For example, from the URLs www.lgma.ca.gov/
play/popular/1*.html, www.lgma.ca.gov/play/home/2*.html
and www.lgma.ca.gov/play/club/3*.html (detected using the

IBT ‘casino’), the shared path under the FQDN is www.lgma.ca.
gov/play. Using this path, our approach queries Google again

with ‘site:FQDN+path’: e.g., site:www.lgma.ca.gov/play. From

the results page of the query, critical terms are extracted by

analyzing snippets under individual result items. These terms

are further compared with the semantics of the current sTLD:

those most irrelevant (with a cosine distance above the threshold

0.9) are kept. Finally, the vectors of these terms are clustered

using the classic k-Nearest-Neighbor (k-NN) algorithm (with

k = 10) together with all existing IBTs. Once a new cluster

is formed in this way, we manually look at the cluster and

label it with its semantics (gambling, drug selling, academic

cheating, etc.). Note that this manual step is just for labeling,

not for adjusting the clustering outcomes, which were found

to be very accurate in our research (Section IV-C).

In the above example as illustrated in Figure 4, the query site:
www.lgma.ca.gov/play leads to the search results page. From

the items on the page, the IBT Collector automatically recovers

a set of critical terms, including ‘goldslot’, ‘payday loan’,

‘cheap essay’ and others. Clustering these terms, some of them

are classified into existing categories such as gambling, drug,

etc., while the rest are grouped into a new cluster, containing

‘cheap essay’, ‘free term paper’ along with other 15 terms.

This new cluster is found to be indeed a new attack category,

and labeled as ‘academia cheating’. In our research, we ran

the approach to extend our IBT set, from 30 terms to 597

effective terms, from 3 categories (gambling, drug, etc.) to 10

large categories (financial, cheating, politics, etc.). Our manual

validation shows that the results are mostly correct.

IV. IMPLEMENTATION AND EVALUATION

In this section, we report our implementation of SEISE

and evaluation of its efficacy. Our study show that the

simple semantics-based approach works well in practice: it

automatically discovered IBTs, achieved an low false detection

rate (1.5%) at over 90% of coverage and also captured 75%

infected domains never reported before (Section IV-C).

A. Implementing SEISE

The design of SEISE (Section III) was implemented into a

prototype system, on top of a set of building blocks. Here we

briefly describe these nuts and bolts and then show how they

are assembled into the system.

Nuts and bolts. Our prototype system was built upon three

key functional components, term extractor, static crawler and

semantic comparator. Those components are extensively reused

across the whole system, as illustrated in Figure 2. They were

implemented as follows:

• Term extractor accepts text as its input, from which it automat-

ically identifies critical terms. The component was implemented

in Python using an open-source tool topia.termextract.
• Static crawler accepts query terms, looks for the terms through

search engines and returns results with a pre-determined number

of items. In our implementation, the crawler was developed in

Python and utilized the Google Web Search API [4] and the

Bing Search API [1] to get search results.

• Semantic comparator accepts a set of terms and compares

them with the keywords of an input sTLD. It can return the

average distance of each term with those keywords or the terms
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whose distances are above a given threshold. This component

was implemented as a Python program that integrates the open-

source tool word2vec. As mentioned earlier, we trained the

language model used by word2vec with the whole Wikipedia

dataset, from which our implementation automatically collected

the context for each term before converting it to a high-

dimensional vector.

System building. Using these building blocks, we constructed

the whole system as illustrated in Figure 2. Specifically, the

Semantic Finder was developed to run the static crawler

to gather the content under an sTLD and then call the

term extractor to identify the keywords for the domain. The

Inconsistency Searcher invokes the semantic comparator to

determine the most irrelevant IBTs before using the crawler

to search for the terms. The Context Analyzer includes a

differential analyzer component implemented with around 300

lines of Python code. For each suspicious FQDN, the analyzer

calls the crawler to query the search engine twice, one under an

IBT and the other for getting the reference (the generic content).

It reports the domain considered to be compromised. Finally,

the IBT Collector uses the crawler to search for the selected

URL path under the detected domain, then the extractor to

get critical terms from the search results and the semantics

comparator to find out new IBTs. Over these IBTs, we further

integrated the k-NN module provided by the scikit-learn open

source machine learning library [7] to cluster them and discover

new bad-term categories.

B. Experiment Setting

Data collection. To evaluate SEISE, we ran our prototype

on three datasets: the labeled bad set and good set, and the

unknown set including 100K FQDNs collected from search

engines, using 597 search terms, as explicated below.

• Bad set. We collected the FQDNs confirmed to have

promotional infections from CleanMX [18], a blacklist of

compromised URLs. A problem here is that these URLs are

associated with different kinds of malicious activities and it is

less clear whether they are promotional infection. What we did

is to collect all the sTLD URLs from the CleanMX feed from

2015/07 to 2015/08, and further manually inspected all these

URLs. Specifically, whenever we saw that advertising, Phishing,

defacement content showing up in the search results of a URL,

it is considered to be exploited for promotional infections. We

further classified these URLs into different categories and also

manually identified related IBTs. In this way, we built a bad set

with 300 FQDNs (together with 15 IBTs in three categories).

• Good set. Using the IBTs collected from the bad set, we

further searched under the sTLDs for the FQDNs (“site:sTLD+
IBT”) that contained those terms but were not compromised.

These domains were used to understand the false detections

that could be introduced by SEISE. Altogether, we collected a

good set of 300 FQDNs related to 15 IBTs and three categories.

• Unknown set. As mentioned in Section II, we gathered 403

sTLDs and manually selected 30 IBTs in three categories.

Running these IBT seeds on these sTLDs, we crawled Google

and Bing over three months, collecting 100K FQDNs. This

(a) False detection rate in differ-
ent semantics distances. Color bar
shows the coverage rate.

(b) False positive rate in differ-
ent semantics distances. Color bar
shows the coverage rate.

Fig. 5: Evaluation results on good set and bad set.

dataset was used as the unknown set for discovering new

promotional infections.

Resources and validation. In all our experiments, our proto-

type system was run within Amazon EC2 C4.8xlarge instances

equipped with Intel Xeon E5-2666 36 vCPU and 60GiB of

memory. To collect the data for the unknown set, we deployed

20 crawlers within virtual machines with different IP settings.

These crawlers utilized the APIs provided by Google and Bing

to dump the outcomes of the queries, from 2015/08 to 2015/10.

To validate the findings made on the unknown set, we em-

ployed a methodology that combined anti-virus (AV) scanning,

blacklist checking and manual analysis. Specifically, for the

FQDN reported by our system, we first scanned their URLs

with VirusTotal and considered that the URLs were indeed

suspicious when at least two scanners flagged the domain.

Then, all such suspicious URLs were cross-checked against the

blacklist of CleanMX. For those confirmed by both VirusTotal

and CleanMX, their FQDNs were automatically labeled as

compromised. For other domains also detected by SEISE, we

randomly sampled 20% of them and manually checked whether

they were indeed compromised.

C. Evaluation Results

Over the aforementioned datasets, we thoroughly evalu-

ated our prototype. Our study shows that SEISE is highly

effective: it achieved near zero False Detection Rate (FDR,

i.e., FP/(FP+TP)) and over 90% coverage (i.e., TP/(TP+FN))

or below 4.7% FDR, 4.4% False Positive Rate (FPR, i.e.,

FP/(FP+TN)) and nearly 100% coverage on the labeled sets

(the bad and good set); with the threshold chosen to balance

FDR and FPR, we further ran SEISE over the unknown set,

which reported over 11K compromised sites, with an FDR

of 1.5% and a coverage over 90%. Also importantly, 75% of

infections discovered from the unknown set are likely never
reported before, including 3 large-scale campaigns, on which

we elaborate in Section V. All these findings were made in

a highly efficient and scalable way: on average, only 2.3

queries were made for finding a new compromised FQDN

and the delay caused by analyzing the query results and

other computing resources consumed for this purpose were

completely negligible.

Accuracy and coverage. We evaluated the accuracy and

the coverage of SEISE under a given set of IBTs. In this
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case, what can be achieved are all dependent on the Context

Analyzer, which ultimately decides whether to flag an FQDN

as compromised. In our research, we first studied our system

over the labeled good set and bad set, and then put it to test

over the unknown set. Figure 5(a) and 5(b) illustrate the results

over the labeled sets, in response to different thresholds for

semantic distances (between the reference and the query of an

IBT). As we can see here, when the threshold goes up, the

FDR goes down and so does the coverage. On the other hand,

loosening the threshold, which means that the IBT is becoming

less irrelevant to the semantics of the sTLD, improves the

coverage, at the cost of the FDR. Overall, the results show

that SEISE is highly accurate: by setting the threshold to 0.9,

we observe almost no false detection (FDR: 0.5% and FPR:

0.4%) with a 92% of coverage; alternatively, if we can tolerate

4.7% FDR (FPR: 4.4%), the coverage becomes close to 100%.

In our research, the threshold 0.9 was then utilized to analyze

the unknown set.

On the unknown set, we ran SEISE to query 597 IBTs under

403 sTLDs. Our prototype inspected 100K FQDNs in total.

11,473 of them were flagged as compromised, about 11% of

the whole unknown set. Table II and Table III summarize our

findings, which are further discussed in Section V. Among all

that were detected, 3% were confirmed by both VirusTotal [11]

and CleanMX [18], 22% were found by at least one of these

two AV systems and further validated manually, and 1000 of

the remaining were inspected manually. All together, the FDR

measured from the unknown set is as low as 1.5%. We further

randomly sampled 500 result pages related to 10 categories

of IBTs and found that our prototype reported 53 infections

and missed 5, which indicates a coverage of about 90%. Also,

note that over 75% of the infections have never been reported

(missed by both VirusTotal and CleanMX). We have reported

the most prominent ones among them to related organizations

and are helping them fix the problem, and will continue to

work on other cases.

IBT expansion. The effectiveness of SEISE also relies on its

capability to discover new IBTs and find new attack instances

across different categories. As discussed before, our prototype

starts with a small set of seed IBTs, 30 terms in three categories.

After searching for all these terms under all the sTLDs, a set

of compromised FQDNs are detected, which are further used

by the IBT Collector to extract new terms for searching all 403

sTLDs again. In our research, we repeated such iteration 20

times, expanding the IBT set to 597 terms and 10 categories.

All the terms and categories were manually confirmed to be

correct. Table I presents the numbers for the terms and the

categories, together with examples of new terms detected, after

the 1st, 5th, 10th, 15th and 20th iterations. As we can see here,

the number of categories and number of IBTs increase quickly

(with a increase rate of 60% and 180%, respectively) in the first

10 iterations, which indicate that our IBT expansion method

is efficient for both in-category and cross-category expansion.

Also, Table III illustrates the total categories of IBTs flagged

by SEISE after these iterations.

Performance. We further evaluated the performance of our

TABLE I: Number of IBTs in each round.

Round # of categories # of IBTs per category Avg. length
0 3 10 2.6
5 5 18 3.0

10 8 25 3.1
15 10 40 3.2
20 10 60 3.8

prototype, in an attempt to understand the scalability of our

design. We found that except the delay caused by receiving

the results from Google, the overhead for analyzing search

results and detecting compromised sites are exceedingly low:

by running 10000 randomly selected queries (50 IBTs over 200

sTLDs), we observed that the average time for analyzing 1K

result items, excluding the waiting time for the search engine,

was 1ms, and also the memory and CPU usages stayed below

5% respectively. The main hurdle here is the delay caused

by the search engine: for Google, it ranged from 5ms to 8ms

per one thousand queries. The design of SEISE already limits

the number of queries that needed to be made for detecting

infected FQDNs: in the experiments, we found that on average,

a compromised FQDN was detected after 2.3 term queries. We

believe that by working with the search provider (Google, Bing

etc.), SEISE can be easily scaled with a quick turnaround of

the search results.

V. MEASUREMENT

Based upon what was detected by SEISE, we performed a

measurement study to understand the promotional infections

on sTLDs, particularly the semantic inconsistency these attacks

introduce. Our study brings to light the pervasiveness of the

attacks and their significant impacts, affecting the websites of

leading academic institutions and government agencies around

the world. Further discovered are a set of surprising findings

and their insights, which have never been known before. For

example, apparently sTLDs are soft targets for promotional

infections, highly ranked and also easier to compromise

compared with gTLD sites of similar ranks; as a result, by

mitigating the threats to the sTLD domains, we raise the bar

for the adversary, depriving him of easy access to the resources

highly valuable to the promotional attacks, which rely on the

compromised site’s rank to boost the rating of malicious content.

As another example, we show that semantic inconsistency can

also be observed in the promotional infections on gTLDs

such as .com, .net, etc., even though these domains tend to

have a much more diverse semantic meaning. Based upon this

observation, a preliminary exploration highlights the potential

of extending our approach to protect gTLD sites, indicating

that a semantic model can also be built for some websites under

the gTLD domains to capture the promotional attacks on them.

Finally, we elaborate on a study on some prominent attack

cases discovered in our research, which, from the semantic

perspectives, analyzes the techniques the adversary employ in

the promotional infections.

A. Landscape

Scope and magnitude. Our study reveals that the promotional

infections are spread across the world, compromising websites
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TABLE II: Top 10 sTLDs with most injected domains.

sTLD Est. total # monitored # injected Volume Injected size
gov.cn 62,667 2,904 1,240 12% FQDN: 1,840 URL: 172,244
edu.vn 16,148 2,032 262 3% FQDN: 312 URL: 22,543

edu 8,955 2,502 246 3% FQDN: 250 URL: 29,580
edu.cn 3,912 1,173 238 2% FQDN: 403 URL: 34,308
edu.au 9,594 1,968 204 2% FQDN: 223 URL: 21,563
gov.co - 1,892 200 2% FQDN: 253 URL: 23,022

gov 6,251 1,562 175 2% FQDN: 178 URL: 15,720
gov.in 4,272 1,402 141 1% FQDN: 163 URL: 14,572
edu.in 3,892 1,243 132 1% FQDN: 172 URL: 12,034
edu.mx 8,232 1,372 126 1% FQDN: 144 URL: 11,056

TABLE III: Categories of IBTs.
Category Keyword Injected site

# kw. avg. len example # FQDN # domains Example
Gambling 62 3.5 casino, slot machine 3650 2134 ca.gov (Alexa: 649)

Drug 64 3.2 cheap xanax, no prescription 2047 1742 princeton.edu (Alexa: 3558)
General 83 3.4 nike air max, green coffee bean 1673 1572 nih.gov (Alexa: 196)
Cheating 52 4.2 fake driving permit, cheap essay 1107 1017 mit.edu (Alexa:789)
Financial 65 3.6 payday loan, quick loan 1092 947 nsf.gov (Alexa:16,303)

Travel 58 4.5 cheap airfare, hotel deal 972 924 gmu.edu (Alexa: 8058)
Luxury 59 3.2 cheap gucci, discounted channel 890 876 nv.gov (Alexa:25,875)
Adult 60 4.6 qvod, sex movie 922 843 tsinghua.edu.cn (Alexa: 6717)

Software 53 5.2 free download, system app 807 734 noaa.gov (Alexa:1126)
Politics 41 3.2 islamic state, falun gong 372 342 buaa.edu.cn (Alexa:33,807)

Domain Alexa Rank IBT Domain Alexa Rank IBT
nih.gov 196 General purdue.edu 1462 Drug
ca.gov 649 Gambling cdc.gov 1731 Drug

state.gov 719 Drug umich.edu 1781 Drug
mit.edu 789 Drug cornell.edu 1806 Drug

harvard.edu 1034 Cheating ed.gov 1816 Drug
weather.gov 1035 Software washington.edu 1905 Drug
stanford.edu 1050 Drug sp.gov.br 1986 Drug

noaa.gov 1126 Software ucla.edu 1989 General
psu.edu 1342 Drug utexas.edu 2012 Financial

berkeley.edu 1452 Drug wisc.edu 2199 General

Fig. 6: Cumulative distribution of injected sTLD sites’ Alexa rank and Top 20 injected sTLD sites with highest Alexa rank.

in all kinds of sTLDs. Altogether, SEISE detected around

1 million URLs leading to malicious content on 11,473

infected FQDNs under 9,734 sTLD domains. The results are

summarized in Table II and Table III.

To understand the magnitude of the threat towards individual

sTLDs, we studied the ratio of compromised FQDNs under each

domain category. For this purpose, we first tried to get some

idea about how many FQDNs are under each sTLD, using the

passive DNS dataset from DNSDB [3]. The dataset includes

the records of individual DNS RRsets as well as first-seen,

last-seen timestamps for each domain and the DNS bailiwick

from Farsight Security’s Security Information Exchange and the

authoritative DNS data. The number of FQDNs under an sTLD

was estimated from those under the sTLD queried between

2014/01 and 2015/08, as reported by the passive DNS records.

The results were further cross-validated by comparing them

with the estimated domain counts given by DomainTools [2]

for each TLD.

Table II illustrates the top-10 sTLD with the largest number

of infected domains, together with the number of domains we

monitored and the total number of domains we estimated for

each sTLD. According to our findings, gov.cn is the least

protected sTLD with a significant portion of the FQDNs

compromised (12%), which is followed by edu.vn 3% and

edu.cn 3%. The top-3 sponsoring registrars with the most

infected gov.cn sites are sfn.cn, alibaba.com, xinnet.com. On

the other hand, .mil sites apparently are better protected than

others. Among the 456 .mil domains we monitored, only 8

domains are injected.

Figure 7 describes the distributions of the compromised

sTLD sites across 141 countries, as determined by their

geolocation. Based upon the number of infected domains,

countries are colored with different shades of blue. As we

can see here, most of infected sites are found in China (15%),

followed by United States (6%) and Poland (5%).

Impacts of the infections. We further looked into the Alexa

ranks of injected sTLD websites, which are presented in

Figure 6. Across different sTLDs, highly ranked websites were

found to be exploited, getting involved in various types of

malicious activities, SEO, Phishing, fake drug selling, academic

cheating, etc. Figure 6 illustrates the cumulative distributions of

the ranks: a significant portion of the infections (75%) actually

happen to those among the top 1M. Figure 6 further shows

the top-20 websites with the highest Alexa ranks. Among
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them, 12 are under .edu, including the websites of leading

institutions like mit.edu (Alexa:789), harvard.edu (Alexa:1034),

stanford.edu (Alexa:1050) and berkeley.edu (Alexa:1452), and

7 under .gov, such as nih.gov (Alexa:196), state.gov (Alexa:719)

and noaa.gov (Alexa:1126). In general, China is the country

that hosts most injected sTLD sites; however, when it comes

to top ranked sites (Alexa rank < 10K), 67% of them are in

the United States and Australia.

Also interesting is the types of malicious activities in which

those domains are involved. Table III shows the number of the

domains utilized for promoting each type of content (across

all 10 categories). As we can see here, most of the injected

sTLD sites (19%) are in the Gambling category, which is

followed by those related to Drug (15%) and General Product
(14%) such as shoes and healthcare products. When we look

at the top-20 domains, many of them are infected to promote

Drug. Also, many .edu domains advertise unlicensed pharmacy,

while .gov are mainly compromised to promote gambling and

fake AV. Interestingly, the injected domains associated with

different countries tend to serve different types of content. For

example, the most common promotions on Chinese domains

are gambling (which is illegal in that country), while most

injected US domains are linked to unlicensed online pharmacy.

Since the infected country code sTLDs (e.g., .cn) can make the

content they promote more visible to the audience in related

countries (e.g., boosting the ranks of malicious sites in the

results of country-related searches), it is likely that promotional

infections target specific groups of Internet users, just like

legitimate advertising.

Our study further shows that many of such infections have

been there for a while. Figure 8 shows the distribution of the

infection time for the injected page in sTLD sites. We estimated

the durations of their infections by continuously crawling the

20K injected pages (which were detected in 2015/08) every

two days from 2015/08 to 2015/11 to find out whether they

were still alive. As we can see from the figure, most infections

last 10-20 days, while some of them have indeed been there

for a while, at least 1 months. A prominent example is the

injection on ca.gov, whose infection starts no later than 60

days.

B. Implications of Semantics Inconsistency

Our study shows that promotional infections, particularly

for those under sTLDs, are characterized by the inconsistency

Fig. 7: The geolocation distributions of the compromised sTLD
sites across 141 countries.

Fig. 8: The distribution of the infection time.

between the semantics of the promoted content and that of an

infected domain’s generic content: in our labeled bad set (the

collection of compromised domains reported by CleanMX; see

Section IV-B), all sTLD-related infections contain the malicious

content inconsistent with the semantics of their hosting websites.

The implication of this observation is that by exploiting this

feature, a weakness of the sTLD-based promotional infections,

a semantic-based approach, like SEISE, can effectively suppress

such a threat to sTLDs. This is significant, since our study,

as elaborated below, shows that sTLDs are valuable to the

adversary because they are less protected and highly ranked.

Further, even for gTLDs, which tends to have highly diverse

and less specified semantics, the malicious content uploaded

there also tends to be incompatible with the compromised

websites’ themes. This indicates that our approach can be

applied beyond sTLDs. Following we report our findings.

sTLD as a soft target. To understand the importance of

sTLDs to the adversary, we compared the compromised sTLD

sites with those under the gTLDs, within the same attack

campaign. A campaign here includes a set of websites infected

for promoting unauthorized or malicious content and those sites

share a set of common features, specifically, they all pointing

to the same target site being advertised, their malicious URLs

having the same features (such as same affiliate ID as URL

parameter) and they all share the same redirection chain. In our

research, we discovered a campaign through infected websites’

“link-farm” structure, i.e., a compromised site pointing to

another one. Following the links on the compromised sTLD

sites enabled us to reach a set of infected gTLD sites, mainly

under .com. We then compared the features of those sites with

those of sTLD domains, in terms of Alexa rank, pagerank

(PR) and lifetime, in an attempt to find out what type of TLD

domains are more valuable to promotional infections.

Table IV presents the top-3 campaigns (all organized as link

farms) discovered in our study. The largest one covers about 872

sTLDs and 3426 gTLDs across 12 countries and regions (US,

China, Taiwan, Hong Kong, Singapore and others). Among the

victims are 20 US academic institution such as nyu.edu, ucsd.
edu, 5 government agencies like va.gov, makinghomeaffordable.
gov, together with 188 Chinese universities and 510 Chinese

government agencies. Also among the victims are 1507 .com
sites. Figure 9(a) and Figure 9(b) compare the Alexa global

ranks and the page rank (PR) of those gTLD and sTLD websites.

As we can see from the figures, 50%-75% of sTLD sites are
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TABLE IV: Top 3 link-farm campaigns with most injected sTLD
domains.

Name # sTLD
domains

# gTLD
domains

# coun-
tries

Promotion
Content

Campaign 1 872 3,426 12 Gambling
Campaign 2 148 5,210 7 Cheating
Campaign 3 60 5,198 15 Drug

ranked within the Alexa top 1M, while only 10%-30% of gTLD

sites are at this level. Actually, more than 40% of the gTLD

sites have Alexa rank outside the top 5M. By comparison, less

than 20% of sTLDs have ranks outside the top 5M. In terms

of PR, more than 30% of the sTLD sites have PR from 4 to 6,

while less than 5% of gTLD sites are PR4-PR6. Also, more

than half of gTLD sites have PR as 0, which have a weaker

SEO effectiveness than those with high PR. This indicates

that the majority of sTLD sites have a stronger effect on the

promoted sites than gTLD sites with no or low PR.

We further compared the durations of the infections for these

two types of domains. Again, we continuously crawled the

compromised pages (identified in 2015/08-2015/09) every two

days from 2015/09 to 2015/11 to check whether the infections

were still there. Figure 9(c) illustrates the distributions of the

sTLD site’s life spans and those of gTLD sites. As can be seen

from the figure, gTLD sites were cleaned up more quickly than

the sTLD sites. Over 25% of the gTLD sites were cleaned

within 10 days, while 12% of the sTLD sites were cleaned

within 10 days.

Our study demonstrates that the sTLDs are ranked higher

than the gTLD sites and much more effective in elevating

the ranks of promoted content, thereby more valuable to

promotional infections. In the meantime, they are less protected

than the gTLDs: once compromised, the infections will stay

there for a longer period of time. This indicates that, indeed,

the sTLDs are valuable assets to the adversary and effective

protection of the site, as SEISE does, indeed makes the

promotional attacks less effective.

Extension to gTLDs. Compared with sTLDs, gTLDs (e.g.,

.com, .net and .org) do not have fixed semantic meanings.

However, we found that still the malicious content injected

here tends to be incompatible with the semantics of the sites,

which can be captured by the search engine results. Figure 10

presents an example of search engine results for an injected

gTLD site iceriversprings.com, which is the website of Ice

River Green brand of bottled water. However, the injected page

show the semantically inconsistent content for “payday loan”

promotion.

Then, we measure the semantics inconsistency on the

3,000 gTLD sites, which are randomly sampled from the

aforementioned campaigns. Specifically, we use the Context
Analyzer component in SEISE to calculate the semantic

distance between the generic content of those known injected

sites (the reference, e.g., the search result of the query

site:iceriversprings.com) and the results of querying IBTs on

these sites, which mostly contain injected malicious content

(e.g., site:iceriversprings.com "payday loan"). However, we

Fig. 10: Example of search engine results of an injected gTLD
site iceriversprings.com.

also found that some compromised gTLD sites show semantic

consistent with the promotional content. For example, online

drug library druglibrary.org (in Campaign 3) was injected to

promoted “cheap xanax”. Hence, to identify those suspicious

sites (before they are checked with the Context Analyzer), we

utilized the similarsites website query API [8] to fetch the site

tags (e.g., “recycling” and “water” for site:iceriversprings.com)

to determine a gTLD site’s semantics, and only use the gTLD

sites showing semantic inconsistency with the IBT (i.e., the

site’s tags semantically distance away from the IBT) as the

suspicious candidates for the input of the Context Analyzer.

This filtering step (for the purpose of increasing the “toxicity

level” [21] of the inputs) is built as the Semantic comparator,

which accepts the threshold for the IBT semantics distance

(Section III-B) and outputs the candidate gTLD sites that

have great semantic distances with the IBT used for the

query. For example, iceriversprings.com, which has the site

tag “recycling”, “water” which shows semantic inconsistency

(determined by Semantic comparator Figure 2) with the IBT

“payday loan”, will be regarded as suspicious FQDNs and

become the input of the Context Analyzer.

Figure 9(d) shows the semantic distances between the

reference and the search results of querying an IBT with

and without the Semantic comparator. We observe that the

Context Analyzer can still identify the semantics inconsistency,

particularly with the help of the Semantic comparator that

selects sites with great semantic distances with the IBT: 97%

of the injected sites have semantic distance larger than 0.8

when the threshold of Semantic comparator is set to 0.9; by

comparison, 85% of the injected sites have semantic distance

larger than 0.8 in the absence of the Semantic comparator.

Further, we measure the semantic inconsistency of unknown

injected gTLD sites. This is nontrivial because simply searching

site:.com "payday loan" will return mostly legitimate search

results. Even though we could validate these FQDNs one by one

through the Semantic comparator and the Context Analyzer, the

cost for finding truly compromised sites becomes overwhelming.

As mentioned earlier, with a similar PR, gTLD sites are

better protected than sTLD sites. Hence, when searching

gTLDs under the IBT (e.g., site:.com "payday loan"), high-

PR gTLD sites tend to appear on top of the search results,

which are actually less likely to be compromised. For example,
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(a) Cumulative distribution of
Alexa global ranks per sites in 3
campaigns.

(b) Cumulative distribution of
Alexa bounce rate per sites in 3
campaigns.

(c) Distribution of the infection
time for the injected pages in sTLD
sites and gTLD sites.

(d) Cumulative distribution of se-
mantics distance per monitored
sites.

Fig. 9: Alexa global rank, PR and life span of sites in three campaigns, and cumulative distribution of semantics
distance per monitored sites.

when searching “payday loan”, many high-PR sites such as

checkintocash.com, wikipedia.org and www.acecashexpress.com
will show up within the top-100 search results. None of them

appear to be compromised. To address this challenge and

identify the sites likely to be compromised (which will be

further determined by the Context Analyzer), we utilized long

IBTs (word length larger than 4) to feed search engine to

obtain suspicious FQDNs. Generally, longer query keywords

have less search competition [27], i.e., websites with lower PRs

are more likely to appear in the search results. For example,

when searching for “payday loan no credit check” under .com,

bottled water website iceriversprings.com and ATM company

website carolinaatm.com are within the top-10 search results.

In our experiments, we utilized 1000 long IBTs in 10

individual categories to do the search, and 23,098 gTLD

FQDNs were collected for the semantic inconsistency analysis.

We set the threshold of the Context Analyzer to 0.9, and 7,430 of

the gTLD FQDNs were reported to have promotional infections.

We further randomly sampled 400 results (200 injected and 200

not-injected) and manually checked the findings. We confirmed

that 182 were indeed infections and 196 were not injected,

which gives us an FDR of 9% and FPR of 8.4%. With this

encouraging outcome, how to detect compromised gTLDs

through semantics-based approaches remains to be an open

question. Particularly, new techniques need to be developed to

further suppress FDR and improve its coverage. Also, query

terms for detection should also be automatically discovered.

C. Case Studies

Perhaps the most surprising findings of our study is the

discovery of several large-scale attacks, infecting many leading

organizations around the world. In addition to the afore-

mentioned gambling campaign, we also found the infections

for promoting counterfeit products, fake essays and political

materials on university and government sites. Here we present

the studies on two cases as examples to provide additional

information about what techniques the adversary uses and how

the attacks are organized.

Exploit kit discovered. We found an exploit toolkit used in

multiple gambling campaigns, for example, Campaign 1. The

toolkit, called xise, was discovered on a cloud drive. By

analyzing its code, we found that xise has the functionalities

for automatic site collection, shell acquisition, customized

injected page generation and a series of evasion techniques such

as redirection cloaking and code obfuscation. More specifically,

it automatically discovers the domains of high-profile websites

from Google and other search engines, and also scans the

websites for the vulnerabilities within the components such

as phpmyadmin, kindeditor, ueditor, alipay and

fckeditor. Further, it lets its user provide the promoted

site’s URL and keywords and automatically generates the pages

to be injected to the compromised websites along a specific path

(e.g., filemanager/browser/default/ images/ icons). The tool also

uploads a configuration file to the compromised web server to

perform redirection cloaking: i.e., it will redirect visitors based

on their HTTP referers to protect the compromised site. Also,

to guarantee the malicious content to be indexed by search

engines, xise also uploads scripts to keep generating pages

to guarantee SEO effectiveness. Note that adding and changes

is a freshness factor for high search engine ranking. In our

research, we manually generated signatures for xise as listed

in Table V. 1037 of sTLD sites we detected are related to

xise with the average semantics distance 0.87 to it sTLDs.
Academic cheating infections. Our research also discovered

many infections promoting academic cheating sites. Those sites

provide online services for preparing any kind of homework

at the high school and college levels, and even taking online

tests for students. We found that such attacks mainly aim at

.edu domains and the examples of the IBTs involved include

‘free essay’, ‘cheap term paper’ and others. These terms were

found to be very effective at finding such malicious activities.

SEISE detected 428 compromised sites, including high-profile

.edu domains such as mit.edu, princeton.edu, havard.edu, etc.
Table VI compares the compromised .edu sites in different

keyword categories. We observe that such malicious activities

have apparently already become a global industry. 119 edu-

cation TLDs in 109 countries have 428 infected domains to

promote academic cheating sites. The Top 3 education TLDs

with most infected sites are edu (23%), edu.mn (11%) and

edu.cn (7%).
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TABLE V: Example of signatures.
Signature

<!--google1-->...<!--googlee-->
<img width="20" height="20" border="0" hspace="0" vspace="0" src="http://count51.51yes.com/count1.gif">

<!--ZJEG_RSS.content.begin-->...<!--ZJEG_RSS.content.end-->
<iframe marginwidth="0" marginheight="0" hspace="0" vspace="0" frameborder="0" scrolling="no" src="" height="0" width="0">

TABLE VI: Comparison of injected education TLDs sites in
different keyword categories.

Category #
FQDN

# do-
mains

Performance
(term query

per site)
Academic
cheating

470 428 2.2

Gambling 589 367 2.8
Drug 423 360 2.5

Financial 401 327 3
Adult 260 214 3.2

VI. DISCUSSION

Our research shows that semantics-inconsistency search

offers a highly-effective solution to the promotional-infection

threat. In this section, we discuss the tricks the adversary can

play to evade our detection, limitations of our technique and

future research, together with the lesson learnt from our study

and our communication with the victims.

Evasion. The current implementation of SEISE is based upon

the search results returned from Google and Bing. While

both are mainstream search engines targeted by promotional

infections, the data we crawled are limited to the sites that

indexed by Google and Bing. Hence, to evade SEISE, the

adversary, who has full control of a compromised website,

may set robots.txt to prevent part of its content from being

scanned. Such evasion techniques, however, will cause the

promotion pages to lose the visitors from the search engines

and also the high-profile links to the sites being promoted.

This defeats the purpose of the promotional infections, which

are meant to advertise malicious content through the search

engines and therefore should aggressively expose its content

(promotional pages) to the search engines, instead of hiding it

from them. Other issues related to search results include the

delay introduced by page indexing and page expiration. Again,

although our approach is not designed to capture a promotional

infection before it is indexed by the search engines, the impact

of the infection is also limited at that time, simply because its

whole purpose is to advertise some malicious materials, which

is not well served without the infected pages being discovered

by the search engine. For page expiration, we need to consider

the fact that as long as the URLs of the promoted content are

still alive, the attack is still in effect, since letting people find

the URLs is the very purpose of the attack. Whether the URLs

are still there can be confirmed by crawling the links. Further,

the snippet of the search results, even for the pages that are

already expired, can still be utilized to find new keywords.

The adversary may play other evasion tricks, by adding

more relevant keywords to the infected page to make the

content look more consistent with the website’s theme, or

hiding the inconsistent content by embedding it within images.

However, even in the presence of relevant content, the malicious

keywords can still be recovered and cause an observable

semantic deviation from the theme of the original website, as

long as the keywords are sufficiently frequent to be picked up by

the search engine and contribute to the change of the malicious

content’s rank in search results. Hiding content in images results

in neglect of malicious content in the search results, which

is not what the adversary wants. Fundamentally, no matter

what the adversary does, the fact remains that any attempt to

cover the content being advertised will inevitably undermine

the effectiveness of the promotional effort. Another evasion

strategy is to just compromise the website with compatible

semantics. This approach will significantly limit the attack

targets the adversary can have. Particularly, it is less clear how

this can be done for sTLDs. Note that even selling medicine

on a health institution’s site can be captured, as the infections

of the NIH pages shown at the beginning of the paper.

Limitations. As mentioned earlier, our current design is

focused on detecting the infections of sTLD sites, since they

have well-defined semantic meanings and are a soft target

for the adversary. In the meantime, gTLDs are also known

to be extensively compromised for promotion purposes. A

natural follow-up step is to develop the semantic technologies

for protecting those domains. This is completely feasible,

as demonstrated in our preliminary study (Section V-B): by

leveraging the Alexa categories, the semantics of even those

more generic domains can also be identified and compared

with that of the content it hosts.

Moreover, our semantic-based detection technique does not

differentiate between server injected domains, blog/forum Spam

and URL redirection [22] (e.g., posting ads on a .edu forum or

utilizing the server-side script of a .gov domain to dynamically

create a page under the domain with promotion content, see

Section I). In our research, we randomly sampled 100 detected

pages and found that about 20% of them are Spam, which

are also considered illicit advertising [22]. A follow-up step

is to develop automatic technologies to identify those cases,

so we can respond to them in a different way (e.g., through

input sanitization). For example, a comment page oftentimes

can be detected from the keywords such as “comment” or

“redirect” involved in its link; such a page, once found to

promote malicious content, can be further analyzed to determine

whether the content is link Spam or caused by an infection.

Also, the use of search engines has a performance implica-

tion. Search service providers often have limits on the crawling

frequency one can have, which causes delay in detecting

malicious content and affects the scalability of our technique.

On the other hand, given the effectiveness of SEISE in catching
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promotional infections, we believe that a collaboration with the

search provider to detect Internet-wide infections is completely

possible.

Lesson learnt. Our study shows that sTLD sites are often

under-protected. Particularly for universities and other research

institutions, their IT infrastructures tend to be open and loosely

controlled. As a prominent example, in a university, individual

servers are often protected at the department levels while

the university-level IT often only takes care of network-level

protection (e.g., intrusion detection). The problem is that,

oftentimes, the hosts are administrated by less experienced

people and include out-dated and vulnerable software, while

given the nature of the promotional infections, they are less

conspicuous in the network traffic, compared with other

intrusions (e.g., setting up a campus bot net). We believe

that SEISE, particularly its Context Analyzer, can play the

role of helping the web administrators of these organizations

detect the problems with those less-protected hosts. Of course,

a more fundamental solution is to have a better centralized

control, at least in terms of discovering the security risks at

the host level and urging the administrators of these hosts to

keep their software up-to-date.

Responsible disclosure. Since the discovery of infected do-

mains, we have been in active communication with the parties

affected. So far, we have reported over 120 FQDNs to CERT

in US and 136 FQDNs to CCERT (responsible for .edu.cn)

in China, the two countries hosting most infected domains.

By now, CCERT have confirmed our report, and notified all

related organizations, in which 27 responded and fixed their

problems. However, it is difficult for us to directly contact the

victims to get more details (like log access) from the infected

servers. On the other hand, given the scale of the attacks we

discovered, the whole reporting process will take time.

VII. RELATED WORK

Detection of injected sites. How to detect injection of

malicious content has been studied for long. Techniques have

been developed to analyze web content, redirection chains

and URL pattern. Examples of the content-based detection

include a DOM-based clustering systems for monitoring Scam

websites [19], and a system monitoring the evolution of

web content, called Delta [16], which keeps track of the

content and structure modifications across different versions

of a website, and identifies an infection using signatures

generated from such modifications. More recently, Soska et

al. works on detecting new attack trends instead of the attacks

themselves [29]. Their proposed system leverages the features

from web traffic, file system and page content, and is able to

predict whether currently benign websites will be compromised

in the near future. Borgolte et al. introduces Meerkat [17], a

computer vision approach to website defacement detection. The

technique is capable of identifying malicious content changes

from screenshots of the website. Other studies focus on mali-

cious redirectors and attack infrastructures. Examples include

JsRED [24] that uses a differential analysis to automatically

detect malicious redirect scripts, and Shady Path [31] that

captures a malicious web page by looking at its redirection

graph. Compared with those techniques, our approach is

different in that it automatically analyzes the semantics of web

content and looks for its inconsistency with the theme of the

hosting website. We believe that the semantics-based approach

is the most effective solution to promotional infections, which

can be easily detected by checking the semantics of infected

sites but hard to identify by just looking at the syntactic

elements of the sites: e.g., both legitimate and malicious ads

can appear on a website, using the same techniques like

redirections, iframe, etc. Further, we do not look into web

content or infrastructure at all, and instead, leverage the search

results to detect infections. Our study shows that this treatment

is sufficient for finding promotional infections and much more

efficient than content and infrastructure-based approaches.

Similar to our work, Evilseed [21] also uses search results

for malicious website detection. However, the approach is only

based upon searching the URL patterns extracted from the

malicious links and never touches the semantics of search

results. Our study shows that focusing only on the syntactic

features such as URL patterns is insufficient for accurate

detection of promotional infections. Indeed, Evilseed reports

a huge false detection rate, above 90%, and can only serve

as a pre-filtering system. On the other hand, our technique

inspects all the snippet of search results (not just URLs),

automatically discovering and analyzing their semantics. This

turns out to be much more effective when it comes to malicious

promotional content: SEISE achieves low FDR (1.5%) at a

detection coverage over 90%.

Study on blackhat SEO. Among the malicious activities

performed by a promotional infection is blackhat SEO (also

referred to webspam), which has also been intensively studied.

For instance, Wang et al. investigated the longitudinal oper-

ations of SEO campaigns by infiltrating an SEO botnet [34].

Leontiadis et al. conducted a long-term study using 5 million

search results covering nearly 4 years to investigate the

evolution of search engine poisoning [23]. Also, Wang et al.

examined the effectiveness of the interventions against the SEO

abuse for counterfeit luxury goods [33]. Moore et al. studied the

trending terms used in search-engine manipulation [25]. Also,

Leontiadis et al. observed .edu sites that were compromised

for search redirection attack in illicit online prescription drug

trade, and briefly discussed their lifetime and volume [22]. In

our paper, we conduct a more comprehensive measurement on

403 sTLD, and multiple illicit practices beside drug trade were

involved.

VIII. CONCLUSION

In this paper, we report our study on promotional infections,

which introduce a large semantic gap between the infected

sTLD and the illicit promotional content injected. Exploiting

this gap, our semantic-based approach, SEISE, utilizes NLP

techniques to automatically choose IBTs and analyze search

result pages to find those truly compromised. Our study shows

that SEISE introduces low false detection rate (about 1.5%)
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with over 90% coverage. It is also capable of automatically

expanding its IBT list to not only include new terms but also

terms from new IBT categories. Running on 100K FQDNs,

SEISE automatically detects 11K infected FQDN, which brings

to light the significant impact of the promotional infections:

among those infected are the domains belonging to leading

educational institutions, government agencies, even the military,

with 3% of .edu and .gov, and over one thousand domains

of .gov.cn falling prey to illicit advertising campaigns. Our

research further demonstrates the importance of sTLDs to the

adversary and the bar our technique raises for the attacks.

Moving forward, we believe that there is a great potential to

extend the technique for protecting gTLDs, as indicated by our

preliminary study. Further, we are exploring the possibility to

provide a public service for detecting such infections.
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