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Abstract—Server-Side Request Forgery (SSRF) vulnerability
poses significant security risks to web applications, enabling
adversaries to exploit web applications as stepping stones for
unauthorized access of internal-only services or even perform-
ing arbitrary commands. Despite its recent emergence as a
distinct category in the 2021 OWASP Top 10 web security
risks and its increasing prevalence in modern web applications,
there remains a lack of effective approaches to detect SSRF
vulnerabilities systematically.

We present a novel methodology, SSRFuzz, to effectively
identify SSRF vulnerability in PHP web applications. Our
methodology consists of three phases. In the initial phase,
we designed an SSRF oracle to examine functions in PHP
manuals and identify sinks that provide server-side request
capabilities. This process yielded a total of 86 sensitive PHP
sinks out of 2101 PHP functions. The second stage involves
dynamic taint inference and the utilization of the identified
sinks to examine the source code of target web applications,
pinpointing all feasible input points that could trigger these
sinks. The final phase employs fuzzing techniques. We generate
testing HTTP requests with SSRF payloads, send them to
the previously identified input points within the target web
applications, and detect if an SSRF vulnerability is triggered.
We implemented a prototype of SSRFuzz and evaluated it on
27 real-world applications, including Joomla and WordPress.
In total, we discovered 28 SSRF vulnerabilities, 25 of which
were previously unreported. We reported all the vulnerabilities
to the affected vendors, and 16 new CVE IDs were assigned.

1. Introduction

The paradigm of retrieving information resources from
web services through user-specified URLs has become a
common factual feature of modern web applications. Those
features are facilitated by server-side requests (SSRs), uti-
lizing HTTP requests generated by servers for inter-server
communication. Numerous popular web applications, in-
cluding WordPress [44] and Joomla [18], utilize SSR for
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diverse functionalities, such as loading remote images as
avatars or downloading plugins.

However, this widely adopted SSR mechanism is suscep-
tible to server-side request forgery (SSRF) vulnerabilities.
This security flaw occurs when a web application inade-
quately validates a user-provided URL, potentially leading
to the redirection of server requests to harmful destinations,
thus opening up opportunities for further exploitation of the
target system. Due to its growing prevalence and threat,
SSRF vulnerability got its own category for the first time
in the 2021 OWASP Top 10 web application threats rank-
ings [78]. Additionally, SSRF has been listed in the 25
most common and dangerous software vulnerabilities (CWE
Top25) by MITRE [48], which underscores the increasing
prevalence of SSRF and the critical need for addressing it.

The exploitation of SSRF vulnerabilities by attackers can
lead to severe security consequences, including unauthorized
access to private files and internal resources, as well as the
capability to scan internal or external networks [35], [38].
Despite efforts by developers to mitigate these risks through
measures such as string-filtering checks and URL access
restrictions, sophisticated attackers have demonstrated the
ability to bypass these defenses using techniques like DNS
rebinding and exploiting servers with 302 redirect capabili-
ties [9], [12], [22].

Prior research has proposed different static or dynamic
testing techniques to detect various web vulnerabilities, such
as SQL injection, XSS, and OS command injection [52],
[55], [58], [61], [62], [68], [74]. However, there remains a
lack of effective approaches to detect SSRF vulnerabilities
systematically. Prior studies have developed a few tools
for identifying SSRF vulnerabilities [1], [29]. Yet, these
tools just collect known attack exploits, still relying on
manual testing to discover novel attacks, which leads to
ineffectiveness and incompleteness in testing, leaving many
bugs undiscovered.

In this paper, we propose SSRFuzz, a new methodol-
ogy aimed at addressing this gap. SSRFuzz is designed
to efficiently identify SSRF vulnerabilities in PHP-based
web applications, the preferred server-side programming
language for 80.4% of websites [83].

The detection of SSRF vulnerabilities entails three chal-



lenges: (1) Lack of an oracle to identify all sinks related to
SSRF vulnerability. Prior work collects a few SSRF sinks
from known SSRF bug reports [37], [70] which is ad hoc
and incomplete. There is a lack of comprehensive research
on how to discover the sinks related to SSRF vulnerability
in PHP. (2) Need for a specific method to reduce the input
space of fuzzing. Modern web applications involve com-
plex communication between the web front-end and back-
end. This complexity is evident in two aspects: the high
number of endpoints in web applications and the numerous
parameters in requests. This complexity directly expands
the input space of fuzzing. Without effective vulnerability
information to drive fuzzing, such as HTTP parameters that
can trigger SSRF vulnerability, fuzzing can become time-
consuming, reducing its efficiency and effectiveness. (3)
Crafting effective payloads to trigger SSRF vulnerabilities.
As illustrated in Figure 5, the URL generation process in-
volves the combination of multiple components. Only well-
constructed payloads can successfully exploit these types
of vulnerabilities. Besides, this payload needs to bypass
application-specific string-filtering checks in the target web
application.

Our methodology consists of three stages, each ad-
dressing a specific challenge. (1) In the sink identification
stage, we designed an SSRF oracle-based picker to identify
sinks in the PHP manual that provide server-side request
capabilities. This stage yielded 86 sensitive PHP sinks from
2101 PHP functions. (2) In the inference stage, we employ
the dynamic taint analysis to identify all viable input points
capable of triggering these sinks. This stage reduces the
tested input points and narrows down the fuzzing space.
(3) In the fuzzing stage, we introduce payload generation
strategies to generate SSRF payloads and infuse them into
the previously identified input points within the target web
application to produce test HTTP requests. After sending the
test HTTP requests to the target web application, the vulner-
ability detector monitors whether SSRF vulnerabilities are
triggered.

We implemented a prototype of SSRFuzz for PHP and
evaluated it against 27 real-world web applications, includ-
ing around 15.6M SLOC of code and 110.9K files. Our
evaluation demonstrates that SSRFuzz can effectively and
efficiently detect SSRF vulnerability. SSRFuzz identified 25
new SSRF vulnerabilities, of which 16 have been assigned
CVEs. The results show that SSRFuzz outperformed exist-
ing SSRF vulnerability detection tools.

In summary, the paper makes the following main con-
tributions:

• New approach: We present a novel approach, SSR-
Fuzz1, for discovering SSRF vulnerabilities with vul-
nerability information-driven web fuzzing. It combines
dynamic taint inference with mutation-based fuzzing to
augment the efficiency of testing.

• New SSRF Oracle: We propose an oracle to identify
the sensitive sinks of SSRF vulnerability. Using this
approach, we identified 86 sensitive PHP sinks out of

1. https://github.com/SSRFuzz/SSRFuzz

2101 PHP functions, among which 73 sinks are newly
discovered.

• Real-world impact: We evaluated SSRFuzz with 27
real-world web applications and successfully identified
28 vulnerabilities, including 25 previously unknown
ones. We disclosed all discovered vulnerabilities to the
affected vendors and were assigned 16 CVE IDs.

2. Background and Motivation

In this section, we first present the workflow of SSRF
vulnerability (§ 2.1) and then provide a concrete example
of SSRF vulnerability in PHP web applications. (§ 2.2).
Finally, we introduce the scope of our research in this paper
(§ 2.3).

2.1. Server-Side Request Forgery Vulnerability

2.1.1. Attack Scenario. The SSRF vulnerability occurs
whenever a web application (WebApp) provides SSR fea-
tures but fails to validate the user-supplied URL properly.
As shown in Figure 1, the normal workflow of SSR involves
three steps. ① First, a user submits input to web applications
intended to specify a URL for the server’s request. This URL
is usually specified in the HTTP request parameters. ② Next,
the web application extracts the URL from the HTTP request
and fetches the resource information indicated by the URL,
which may originate from local, internal, or external servers.
③ Finally, the obtained resource is transferred to web appli-
cations. Depending on the different SSR functionality within
the web applications, it either directly transfers the fetched
resource to users or processes the resource before returning
it, such as by only providing the web page title associated
with the URL.

Although server-side requests are crucial for the func-
tionality and interoperability of modern web applications,
they must be handled securely to prevent SSRF vulnera-
bilities. For instance, web applications may not adequately
validate user-supplied URLs, which allows an attacker to
manipulate web applications to send a crafted request to an
unexpected destination, even when protected by a firewall
or NAT.
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Figure 1: Normal SSR communication model.

2.1.2. Threat Model. In our threat model, we assume that
a remote attacker can interact with a PHP web application



normally and has the ability to modify the HTTP request
sent to the PHP web application. The security risks caused
by SSRF vulnerability can be classified into three categories
depending on the different resource servers that the attacker-
specified URL targets.

• Exploiting Local Server via WebApp: The adversary
manipulates the URL of the resource server to point
towards a local server, allowing the WebApp access
and retrieve resources from the local server. These
resources include web interfaces that are usually re-
stricted to local users in an unauthorized state and local
file resources (such as application configuration files
containing sensitive information). Once these resources
are accessed, it can lead to potential data leakage.

• Exploiting Intranet Server via WebApp: The adversary
can exploit SSRF vulnerability for activities like port
scanning on internal servers (e.g., checking if port 6379
is open on a server within the same intranet as the
WebApp) or identify application service (for example,
to identify whether Tomcat is deployed on the internal
server).

• Exploiting External Server via WebApp: The adversary
can use an SSRF vulnerability to make WebApp act as
an attack proxy, thereby hiding their real IP addresses
when accessing an external server. The SSRF vulner-
ability can escalate to DDoS attacks on the external
server when the attacker controls multiple WebApps.
Attackers can also use the SSRF vulnerability to make
WebApp obtain malicious code from his external server.
If WebApp executes the malicious code, it will cause
other security threats.

It is worth noting that existing defenses against SSRF
attacks often rely on allow list access control policies [53]
to restrict the resources that an attacker can access (e.g.,
domains and IPs). However, this defense might be bypassed
using DNS rebinding attacks [11], [56] or HTTP redirections
[69], [76].

2.2. Example

Listing 1 provides a PHP code example with an SSRF
vulnerability. The web application allows users to select an
image as their profile picture. Users can provide the image
URL to the web application in the GET parameter called
picurl. Once the server-side PHP application receives the
URL, it will automatically fetch it with the curl_exec
function and immediately return the response to the user. It
is worth noting that the one who requests the image is the
server rather than the browser.

The SSRF vulnerability arises since the code in List-
ing 1 does not restrict which URL can be requested.
Thus, if an attacker submits a malicious payload (e.g.,
“file:///etc/passwd”) to the application via the
picurl parameter, the code will faithfully output the cor-
responding password file contents to the attacker.

2.3. Scope

Prior to exploring methods to detect SSRF vulnerabil-
ities, we conducted an empirical study to understand the
types of input data that trigger these vulnerabilities.

In the empirical study, we randomly selected a total
number of 100 SSRF vulnerabilities from the CVE list [66]
of the National Vulnerability Database (NVD) over the past
three years. We analyzed these vulnerabilities based on dis-
closed information such as CVE descriptions, vulnerability
reports, patches, etc. SSRF can be classified according to
different standards. In this paper, we focus on classifying
input data formats that trigger SSRF vulnerabilities. We
observed that there are mainly two types of input formats:
(1) 99% of the inputs are string values that conform to
the RFC 3986 URL specification [75]. This string value is
typically used as the value of HTTP parameters, including
in parameters of JSON format data. (2) 1% of the input
is a URL string in XML format data. Thus, our research
is primarily concerned with detecting SSRF vulnerabilities
caused by inadequate validation of URLs by web appli-
cations. Unless otherwise stated, we restrict the research
scope to the former type of SSRF vulnerability and discuss
identifying SSRF vulnerability caused by XML formatted
input data as future work in Section 6.

Define the SSRF vulnerability within the scope. RFC
3986 defines the composition of URLs into six main parts,
as shown in Figure 5. In this research, we aim to identify
SSRF vulnerability where user-supplied data can corrupt
elements of the URL, such as schemes (e.g., file://”,
gopher://”), domains, ports, and paths.

1 <?php
2 function get_picture($pic_link){
3 $curlobj = curl_init();
4 curl_setopt($curlobj,CURLOPT_URL,$pic_link);
5 curl_setopt($curlobj, CURLOPT_RETURNTRANSFER, 1);
6 $result=curl_exec($curlobj);
7 $data=’image/png;base64,’.base64_encode($result);
8 echo ’<img src="data:’.$data.’">’;
9 curl_close($curlobj);

10 }
11
12 $pic_link = $_GET[’picurl’];
13 if (!empty($pic_link)){
14 get_picture($pic_link);
15 } else {
16 $msg = "Invalid Resource";
17 echo $msg;
18 }
19 ?>

Listing 1: A code snippet for SSRF vulnerability

3. Overview

3.1. Challenges in Discovering SSRF Vulnerabili-
ties

Given the serious security threat posed by SSRF vul-
nerabilities, we aim to develop an effective methodology



to identify SSRF vulnerabilities in web applications. To
achieve this goal, we face three key challenges:

Challenge 1: Lack of an oracle to identify all sinks
related to SSRF vulnerability. Prior work collects SSRF
sinks from known SSRF bug reports [37], [70], but those
bug reports do not cover all possible SSRF vulnerability
scenarios. There are many other functions in the PHP doc-
umentation that provide server-side request capabilities and
could lead to SSRF vulnerability. Unfortunately, identify-
ing sensitive sinks associated with SSRF vulnerabilities is
challenging due to the lack of available oracles.

Challenge 2: Reducing the input space for fuzzing.
Web applications often provide users with a large number of
input points. A significant portion of these input points is not
pertinent to SSR functionality. Consequently, interactions
with these specific inputs are not expected to precipitate
SSRF vulnerabilities. Blindly fuzzing all input points can
waste much testing time and reduce fuzzing efficiency.
Therefore, we need a way to identify all potential input
points that can trigger SSRF vulnerabilities before fuzzing.

Challenge 3: Generating effective payloads to trigger
SSRF vulnerabilities. The payload that can trigger an SSRF
vulnerability should be a string that conforms to the URL
structure specification. In addition, since the target web ap-
plication may have string-filtering checks, the payload needs
to be mutated to bypass string-filtering checks. However,
there is no available mutation strategy to generate payloads
that both conform to the URL structure specification and
can bypass string-filtering checks.

3.2. Our Solution

In light of these challenges, we propose a vulnerability
information-driven web fuzzing called SSRFuzz. Figure 2
illustrates an overview of SSRFuzz. The overall input for
SSRFuzz contains the PHP manual and web application
source code, while the output is a report about the detected
SSRF vulnerability. The workflow of SSRFuzz is as follows.

Solution for Challenge 1: Sink Identification Stage.
We designed an SSRF oracle based on the definition of
SSRF vulnerabilities within the scope of our study. Then,
we utilize the SSRF oracle to examine functions in PHP
manuals and identify sinks that provide SSR functionality.
The workflow of this phase is as follows: ① Given the
PHP manual, the test case generator can create 2101 code
snippets as test cases for each of the 2101 functions in the
PHP manual. ② With these test cases, the SSRF oracle-
based picker filters out sensitive sinks that could lead to
SSRF vulnerability. This stage only needs to be run once
when testing different versions of PHP (such as PHP5 and
PHP7) rather than for every web application tested.

Solution for Challenge 2: Dynamic Taint Inference
Stage. In this phase, we leverage dynamic taint inference
to examine the source code of target web applications,
pinpointing all feasible input points that could trigger these
previously identified sinks. This approach can effectively
narrow down the input space of fuzzing. The workflow
of this phase is as follows: ③ After hooking the SSRF

sinks, SSRFuzz builds an instrumented web application
runtime environment. ④ Web crawler interacts with the
instrumented web application runtime environment. ⑤ The
dynamic tainted inference module infers the input points
that can trigger the sinks, such as the user-controllable
parameter name. ⑥ Then, the identified input points (HTTP
parameter name) are forwarded to the request builder for
further testing.

Solution for Challenge 3: Fuzzing Stage. During this
phase, we tailored a specialized vulnerability detector for
SSRF vulnerabilities and developed new mutation strategies
to generate testing payloads. The workflow for this phase
is as follows: ⑦ The payload generator generates testing
payloads as described in Section 4.3.1. ⑧ The requests
builder then injects these payloads into the corresponding
user-controllable parameter to form a new HTTP request.
This request is sent to the test environment, which deploys
the instrumented web application. ⑨ The vulnerability de-
tector uses the vulnerability detection strategies described
in Section 4.3.2 to determine if an SSRF vulnerability is
present. If an SSRF vulnerability exists, a vulnerability
report is generated. The vulnerability report includes the
call stack information, the vulnerable code, and the HTTP
request that can trigger the SSRF vulnerability.

4. SSRFuzz Design

4.1. SSRF Sink Identification

Prior research collects a limited number of SSRF sinks
from SSRF bug reports, missing many functions susceptible
to SSRF exploitation. To bridge this gap, our goal is to
scrutinize every function in the PHP manual to identify all
possible sinks. However, pinpointing sinks related to SSRF
vulnerabilities is challenging due to the absence of detection
oracles and the PHP manual’s lack of explicit documentation
on SSR behaviors for PHP functions.

To surmount this obstacle, we have developed an SSRF
oracle for this task. First, we collect a list of URL schemes
by examining the PHP manual and the source code of
the PHP engine Zend because SSRF vulnerabilities are
usually triggered by user-supplied URLs, as presented in
Section 2.3. We collected 19 URL schemes in total. Next,
we analyze the SSR functionalities of these URL schemes
to understand their expected behaviors, such as file access
or network socket interaction. This analysis led to the cre-
ation of 21 probe payloads designed to activate these SSR
functionalities, as detailed in Table 3.

After that, we construct test cases for each function
in the PHP manual for examination. The model output in
Appendix A.1 shows a test case for the fopen function.
Subsequently, we develop an SSRF oracle-based picker that
dynamically loads and executes each test case using previ-
ously crafted probe payloads. If a test case target exhibits
the expected SSR behavior during the testing process, we
consider the corresponding function as an SSRF sink. For
instance, if executing the test case for the fopen function



Figure 2: SSRFuzz architecture: A workflow overview of SSRFuzz for SSRF vulnerability.

with the input “file:///flag” results in accessing the flag
file, we classify the fopen function as an SSRF sink. To
minimize manual efforts in test case generation, we employ
the few-shot prompting technique using OpenAI’s ChatGPT
API, enabling automatic test case generation (further details
in Appendix A.1). Ultimately, our analysis identifies 86 out
of 2101 built-in PHP functions that can potentially lead to
SSRF vulnerability.

We further compared sinks identified by SSRFuzz with
existing collections of SSRF sinks and found that SSRFuzz
has identified all known sinks so far and has also discovered
73 new ones. The SSRF sinks identified by SSRFuzz were
compared against other collections, as depicted in Figure 3.
This collection includes two SSRF vulnerability labs (SSRF
Vulnerable Lab with 0.5k Github stars [37] and OpenRasp
Testcases with 0.25k Github stars [70]), a comprehensive
vulnerability lab (Pikachu vulnerability testing platform with
2k Github stars [73]), and SSRF sinks referenced in non-
academic articles [27], [36], [40] from the top 30 Google
search results.

To the best of our knowledge, the list of SSRF sinks we
found is the most comprehensive to date2. As we will show
in Section 5.3, these newly discovered sinks have aided us
in identifying multiple new vulnerabilities.

4.2. Dynamic Taint Inference for SSRF

4.2.1. Instrumentation for Dynamic Taint Inference.
SSRFuzz’s instrumentation is designed to perform dynamic
taint inference. The dynamic taint inference module has
two core functions. The first function involves tracking
input sources with taint tags and establishing whether they
can flow into sensitive sinks and form a vulnerable taint
flow. The second function is to ascertain the potential of
a vulnerable taint flow to activate an SSRF vulnerability.

2. https://github.com/SSRFuzz/SSRFSinks

Figure 3: Venn Diagrams showing covered sinks between
the vulnerability labs and our work.

The instrumentation enables dynamic taint inference to track
and analyze tainted data, allowing it to identify parameters
likely contributing to an SSRF vulnerability accurately. This
allows the fuzzing engine to focus only on these parameters,
which reduces the overall input space used for fuzzing.

The instrumentation contains three functionalities: (1)
attaching taint tags to string variables, (2) propagating and
tracking taint tags during program execution, and (3) hook-
ing SSRF-sensitive sinks. We have modified the imple-
mentation of string-related functions, string variables, and
sensitive sinks within the Zend virtual machine to achieve
the above three functionalities. Therefore, the instrument
does not need to modify the web application, making it
transparent to web applications and facilitating smoother
deployment.

Figure 4 illustrates how the instrumentation works while
executing our vulnerable example in Listing 1. Initially,
the input source ($_GET[’picurl’]) is attached with
tainted tag. The user specifies the value received by this



input source in the HTTP request parameter picurl. As
the code executes dynamically, the tainted tag also moves
along the execution path shown in Figure 4, spreading
from source operands to destinations. The instrumentation
pre-hooks the SSRF sinks (e.g., the curl_exec function
in code Listing 1). Thus, when the tainted tag reaches
the curl_exec function, the instrumentation detects the
behavior of a sensitive sink invoked over the tainted mali-
cious string. Subsequently, the instrumentation records the
input source information from the dynamic taint tracking.
However, we cannot determine whether the variable’s value
becomes safe after sanitization during the propagation [55].
To bridge this gap, we need to use dynamic taint inference
to assess the possibility of an SSRF vulnerability.

4.2.2. Dynamic Taint Inference. We developed a dynamic
taint inference method based on instrumentation to evaluate
the existence of SSRF vulnerability. This approach is based
on a key observation that SSRF vulnerability is essentially
caused by invoking an SSRF-sensitive sink on tainted mali-
cious characters. If there are no effective sanitizations in the
vulnerable tainted flow, then the value at the taint source and
sink tend to be highly similar or even identical. It is worth
noting that sanitization is essentially a process for strings
involving add, delete, and replace operations. Thus, these
similarities can be compared to determine the potential risk
of activating SSRF vulnerabilities.

Algorithm 1 shows our dynamic taint inference method
to discover the correlation between values at taint sources
and sinks. The following paragraphs will describe these
phases using the symbols outlined below.
• X = a source (e.g., $_GET[’picurl’])
• Y = a SSRF sink (e.g., curl_exec)
• Xv = string value at source X
• Yv = string value at SSRF sink Y
• H = an HTTP request message
• p = an HTTP parameter that can trigger an SSRF vulner-

ability
The core of the algorithm is to iterate over

each source. The input sources that are under the
control of users are deemed untrusted [54]. The
AddVariableWithTaintTag function is employed
to mark the untrusted input source as tainted, thereby
highlighting the potential security risks associated with the
data originating from these sources.

A pivotal aspect of this algorithm involves the deter-
mination of the correlation between the values of the taint
source and the sink. The IsTaintMetaInfoIntoSink
function is utilized to ascertain whether the taint tag
has propagated into SSRF sinks. To evaluate the cor-
relation between the values of tainted sources and
sinks, conditional checks involving the Substring and
StringSimilarity functions are employed. This eval-
uation facilitates the early exclusion of tainted flow that
incorporates strict string-checking logic, thereby optimizing
the efficiency of the fuzzing.

Function 1: Substring. This phase is focused on iden-
tifying an exact substring match between string values orig-

Algorithm 1 Dynamic Taint Inference Algorithm for Iden-
tifying Potential Input Sources Triggering SSRF Sinks.

1: Input: Sources: Untrusted input sources of PHP (e.g.,
$ GET, $ POST)

2: Output: Hp: an HTTP request message with parameter
p which can trigger SSRF Sinks

3: Begin
4: InitializeInstrumentedWebEnvironment()
5: for each X ∈ Sources do
6: AddVariableWithTaintTag(X)
7: for each Op ∈ Operations do
8: if InvolvesTaintedVariable(Op) then
9: PropagateTaintTag(Op)

10: end if
11: end for
12: if IsTaintMetaTagIntoSink(Y ) then
13: if Substring(Xv, Yv) is not True then
14: if StringSimilarity(Xv, Yv) is True then
15: return Hp

16: end if
17: else
18: return Hp

19: end if
20: end if
21: end for
22: End

inating from the source (X) and terminating at the sink (Y).
If a substring match is found, the dynamic taint inference
module immediately reports a potential taint flow that can
trigger an SSRF vulnerability. In scenarios where an exact
substring match is not present, the StringSimilarity
function comes into play, assessing the probability of the
taint flow leading to an SSRF vulnerability.

Function 2: String similarity. This phase performs
approximate matching on Xv and Yv. The Levenshtein dis-
tance between Xv and Yv is calculated to obtain a similarity
score. This score is the result of dividing the Levenshtein
distance by the length of whichever string is longer, Xv

or Yv. This similarity score is then compared with the
threshold β for the purpose of discarding taint flows unlikely
to cause SSRF vulnerabilities. The formula 1 shows how
the similarity score between Xv and Yv is calculated. To
minimize the error of incorrectly identifying two distinct
strings as the same, the similarity threshold is intentionally
set high, at 0.9.

Similar (Xv , Yv) = 1−
levenshtein (Xv , Yv)

max (strlen (Xv) , strlen (Yv))
(1)

4.3. SSRF Fuzzing

SSRFuzz employs a vulnerability-driven fuzzing ap-
proach to identify SSRF vulnerabilities and generate Proof
of Concept (PoCs). During the inference stage, the dynamic
taint inference module pinpoints potential SSRF vulnerabil-
ity taint flows (more details in 4.2.2). Upon detecting an



Figure 4: The syntax tree of the PHP code snippet in the Listing 1.

SSRF vulnerability taint flow, SSRFuzz records two key
information: the HTTP request triggering the vulnerability
and the specific parameter name facilitating the taint flows
into the sensitive sink. This key information related to
vulnerabilities is relayed from the inference stage to the
fuzzing stage. In the fuzzing stage, the request builder
receives this key information and uses the payload generator
to generate the SSRF payload as input to the corresponding
HTTP request parameters. This process constructs a series of
HTTP requests with different SSRF vulnerability payloads.
After that, the fuzzing starts for the same web application
runtime environment without the instrumentation module.
Then, the vulnerability detector uses predefined detection
strategies (detailed in 4.3.2) to identify SSRF vulnerabilities.
Upon successful detection, a comprehensive vulnerability
report is generated, encompassing three critical pieces of
information: (1) the HTTP request capable of triggering the
SSRF vulnerability (along with the input parameter that can
cause the vulnerability marked in the request), (2) the code
implicated in the SSRF vulnerability, and (3) the call stack
detailing the SSRF taint flow.

4.3.1. Payloads Generator. The primary objective of mu-
tations is to generate payloads that effectively trigger SSRF
vulnerabilities and bypass string-filtering checks. The dy-
namic taint inference module has pinpointed the user-
controllable HTTP parameters associated with potential
SSRF vulnerabilities. These parameters are thus targeted
as key objects for mutation testing. SSRFuzz generates a
range of payloads tailored to test these user-controllable
parameters. These payloads are strategically injected into
the parameters. The vulnerability detector is then employed
to confirm or refute the presence of SSRF vulnerabilities.

Mutation vectors. SSRFuzz mutates the position of the
components in a URL (as shown in Figure 5) to craft pay-
loads that can activate SSRF vulnerabilities. The mutation
is divided into two steps: (1) The initial stage involves con-
structing initial payloads formulated per established testing
strategies. (2) The subsequent stage involves performing
mutation operations on the initial payloads. During the
fuzzing procedure, these generated payloads are utilized

Figure 5: Structure of URL and mutation vectors

in a random sequence as inputs for fuzzing. The fuzzing
engine follows a rule that stops further experimentation
on the remaining payload once the SSRF vulnerability is
successfully triggered.

Phase I: Initial Payloads. In this phase, SSRFuzz first
creates a comprehensive set of testing strategies that outline
methods for combining URL components. These strategies
are highly comprehensive, covering various combinations
of URL components, with the aim of thoroughly examining
every possible combination. Therefore, the payload genera-
tor produces a diverse collection of initial payloads, each
injecting different values corresponding to the respective
attributes of the URL components. Table 4 illustrates the
specific filling operations. These initial payloads are specif-
ically crafted to effectively trigger SSRF vulnerabilities,
particularly effective without string-filtering checks.

Phase II: Mutating Payloads. The main goal of muta-
tion is to transform the initial payload generated in Phase I
so that the mutated payload can trigger SSRF vulnerability
and bypass string-filtering checks. To achieve this goal, we
investigated known CVEs, and existing evasion techniques
from the Internet [26], [32], [39]. Based on these investiga-
tions, we designed 31 operations summarized in Table 5 to
bypass strings filtering logic.

The M29 mutation operation, for instance, was concep-
tualized following our analysis of current SSRF defense
methods [34]. Our research reveals that developers often
have a limited understanding of the complexities involved
in URL parsing, which in turn affects the effectiveness of
their sanitization functions. To address this, we introduced
the M29 mutation operation specifically to bypass whitelist-



based input filters. This approach enabled us to discover
an SSRF vulnerability in the open-source software Wonder-
CMS, a feat not achieved by other state-of-the-art tools (as
detailed in Section 5.5.1).

SSRFuzz uses a combination of mutation operations to
generate a chain list. Each chain in this chain list entails a list
of mutation operations that SSRFuzz applies to mutate an
initial payload. Each mutated payload is thus a computation
result of applying mutations in a chain to an initial payload.
We predefine a set of validity conditions for each mutation
operation and exclude operations that do not satisfy these
conditions when creating the chain list. For example, when
the initial payload does not contain the string ”127.0.0.1”. In
this case, mutation operations M1-M11 will be considered
invalid.

4.3.2. Vulnerability Detection Strategy. We designed the
six vulnerability detection (VD) strategies based on the
threat model described in Section 2.1.2. In this threat model,
attackers typically exploit SSRF vulnerabilities to access
various types of resources. As a result, vulnerability de-
tection strategies can be categorized into network and file
monitoring strategies, depending on the attacker’s intentions.

The network monitoring strategy employs the out-of-
band application security testing (OAST) technique to mon-
itor HTTP and DNS interactions, referred to as HTTP OOB
and DNS OOB in this paper. Additionally, the network mon-
itoring strategy also includes the monitoring of port access
and the analysis of HTTP response packets. These four
monitoring strategies correspond to the generation strategies
for URL components during the phase of mutation payloads,
namely Scheme, Userinfo, Host/Domain, Path, and Port.

VD1 The HTTP OOB monitor focuses on tracking
the HTTP requests received by the server host-
ing the vulnerability detector. It identifies SSRF
vulnerabilities by detecting a specific URL (e.g.,
http://vuln.detector/a6s9emny). The path
component of URLs is introduced by the payload gen-
erator during Phase I of the initial payload.

VD2 The DNS OOB monitor is centered on observing DNS
requests received by the server hosting the vulnerability
detector. The detection of SSRF vulnerabilities is facil-
itated by justifying if a specific subdomain DNS query
exists (e.g., a6s9emny.vulndetector.com). The
subdomain part is introduced in the Userinfo and Host/-
Domain components by the payload generator.

VD3 The Port monitor operates by activating multiple ports
on the server where the web application is hosted,
monitoring for any incoming connections. Connections
to these ports signal the presence of an SSRF vulner-
ability.

VD4 The HTTP response Monitor analyzes HTTP response
messages. For example, it examines responses to the
payload “file:///flag” to check if they contain
the content of the flag file.

The file monitoring strategy operates directly on the web
application server and involves monitoring HTTP log files
and feature files. These two monitoring methods correspond

to the generation strategies aimed at the Scheme and Path
components of the payload generator for URLs.

VD5 The HTTP log monitor detects URLs with spe-
cific strings in HTTP logs, and if such URLs are
found, the vulnerability detector reports the pres-
ence of an SSRF vulnerability. This monitoring pol-
icy focuses on malicious requests destined for lo-
cal IP addresses. It is designed to identify cases
where the Path component of the URL is suscep-
tible to manipulation via user inputs. It identifies
SSRF vulnerabilities by detecting a specific URL in
the HTTP log (e.g., GET 127.0.0.1 - [DATE]
"GET /a6s9emny" 200 Status Code).

VD6 The specific file monitor checks whether the web ap-
plication has interacted with specific files, including
actions like access or modification. An example of
using this strategy is creating a “flag” file in the root
directory and monitoring it for any interactions after
sending an HTTP request using a request builder. If
any interactions are detected, it signifies the presence
of SSRF vulnerabilities.

5. Evaluation

In this section, we first introduce the SSRFuzz prototype
(§5.1) and the experimental setup (§5.2). We then evaluated
SSRFuzz for finding SSRF vulnerabilities. (§5.3). We also
compared it against a state-of-the-art black-box vulnerability
scanner (§5.4). Finally, we discuss a few interesting vulner-
abilities SSRFuzz detects (§5.5).

5.1. SSRFuzz Prototype

We implemented a prototype of SSRFuzz to find SSRF
vulnerabilities. The test case generator is built on the Python
LangChain library and uses gpt-3.5-turbo model [25] to
generate test cases automatically. The SSRF oracle-based
picker is developed in Python, while the web crawling
functionality is provided by crawlergo [7], a highly regarded
open-source tool. The crawlergo can recursively discover
URLs within the same domain and queue them for explo-
ration. Further, it provides an array of advanced built-in
features, including the ability to automatically submit forms
and smartly trigger JavaScript events, thereby enabling in-
depth exploration of web pages. As crawlergo navigates
through web pages, it simulates user interactions such as
clicks and form fill-ins to initiate network requests. For
instance, it automatically determines the value types of form
fields, and inputs predefined usernames, email addresses,
and other information to meet the format requirements of the
form. The instrumented web app runtime environment is set
up on an Apache web server with PHP version 7.2.34. The
instrumentation module, developed in C language and based
on xmark [45], provides an interface for PHP. This allows us
to use PHP code to attach taint tags to untrusted sources and
hook SSRF sinks. The capabilities of the taint tags tracking
are built upon modifications to the Zend virtual machine.



The dynamic taint inference module was developed using
PHP and C. The payload generator, request builder, and
vulnerability detector are implemented in Go. These three
modules discover SSRF vulnerabilities by sending HTTP re-
quests with inserted payloads to the web application runtime
environment.

5.2. Experimental Setup

Dataset. We evaluated SSRFuzz on 27 real-world PHP
applications, which collectively consist of 15.6 million
Source Lines of Code (SLOC) and over 110.9 thousand
files, as referenced in Figure 6. Our criteria for selecting
the applications include two categories of applications. First,
we collected popular PHP applications based on the ranking
from W3Techs [42], to cover widely-used and complex
applications such as WordPress, Drupal, and Joomla. We
gathered 17 PHP applications that either have over 0.1%
market share or have over 500 stars on GitHub. Second, we
supplemented 10 more applications that were evaluated by
prior works [50], [64], [81], [88]. Based on statistical data
from ZoomEye [47], the total number of web applications
in our dataset, as deployed across the Internet, amounts to
16.9 million.

Setup. SSRFuzz was deployed on a Linux VM with Intel
8-cores of 2.3 GHz CPU with 16 GB RAM. We installed
Ubuntu 18.04, Apache 2.4, and PHP 7.2.34 at the target
system under testing, accounting for 15.1% of web server
settings among the Alexa top 10 million websites using PHP
[41]. To conduct this assessment, we created separate virtual
machine snapshots for each web application, including the
SSRFuzz instrument module, started the web application,
and ran SSRFuzz.

5.3. Discovering Real-World SSRF Vulnerabilities

In total, SSRFuzz finds 28 unique vulnerabilities from
those 27 web applications, among which 25 were previously
unknown. We have responsibly disclosed all the identified
vulnerabilities to the corresponding vendors and have re-
ceived 16 CVEs to date. The remaining vulnerabilities are
waiting for CVE numbers to be assigned. Furthermore, we
analyzed the functionalities that caused SSRF vulnerabili-
ties and found 14 were related to download functionalities
(involving plugin downloads, template codes, etc.), 5 were
related to image editing, 8 were related to file management,
and 1 was related to social networking.

Security Risk of Identified Vulnerabilities. Table 1
presents an overview of identified vulnerabilities across
various applications, including associated CVE numbers (if
available) and the corresponding CVSS scores from the
National Vulnerability Database (NVD) [23]. Among the 16
vulnerabilities assigned CVE numbers, NVD has evaluated
and classified 13 publicly disclosed vulnerabilities based
on the Common Vulnerability Scoring System (CVSS) [6].
Three vulnerabilities were given a HIGH rating with a CVSS
score of 8.8. The other ten vulnerabilities were rated as
CRITICAL, with seven scoring 9.1 and three scoring 9.8

on the CVSS scale. The 25 new identified vulnerable appli-
cations include popular PHP applications, such as Joomla,
Drupal, and Z-BlogPHP. The estimated number of websites
deploying these three applications ranges from 22,763 to
128,638 sites [47].

False Negatives and False Positives. SSRFuzz identi-
fied 3 out of 4 known vulnerabilities. The reason for missing
one vulnerability in WordPress is that SSRFuzz does not
support crafting a payload in XML format. As this scenario
is outside the scope of this study, as presented in Section 2.3,
SSRFuzz is unable to identify this vulnerability. The detailed
exploration of this particular vulnerability is further elabo-
rated upon in Appendix A.2. To evaluate the false positive
rate of our findings, we conducted a thorough manual review
of the identified SSRF vulnerabilities. Our results show that
all vulnerabilities were valid and exploitable, with no false
positives observed.

5.4. Comparison with State-of-the-Art

We compare SSRFuzz with the state-of-the-art commer-
cial black-box web application vulnerability scanner Burp-
Suite [29], and an open-source automatic SSRF fuzzing
and exploitation tool SSRFmap [1]. We selected these tools
due to their popularity in discovering SSRF vulnerabilities.
Importantly, SSRFuzz also employs black-box fuzzing tech-
niques in its fuzzing phase, making it a suitable candidate for
direct comparison with these tools. To compare our approach
with BurpSuite and SSRFmap, we focus our evaluation on
two metrics commonly used in previous black-box fuzzing
studies [57], [63]: how many vulnerabilities are discovered
by each tool and how long it takes to find vulnerabilities in
a web application.

Configuration. In setting up our comparative analysis,
each tool’s unique features were taken into account. Since
SSRFmap lacks a web crawling feature, it cannot inde-
pendently crawl websites and scan SSRF vulnerabilities in
the process. To address this, we supplied SSRFmap with
the requests found by the SSRFuzz web crawler and also
automatically specified the HTTP parameter names in the
requests for fuzzing by SSRFmap. BurpSuite was configured
to a deep scan to achieve greater coverage and better un-
derstand a site’s security posture, with the crawling process
restricted to a maximum of 2.5 hours. Unlike the crawl,
BurpSuite’s audit process for identifying vulnerabilities did
not have a timeout option and was allowed to run until
it was completed. SSRFmap is designed to exploit SSRF
vulnerabilities to attack web applications, so there is no
dedicated detection module for SSRF vulnerabilities. So,
we utilized with its readfiles, network scan, and
portscan modules for scanning. Then, we manually as-
sessed the results from these modules to pinpoint SSRF
vulnerabilities. SSRFmap also did not have a timeout option
and was allowed to run until it was completed. In addition,
when using BurpSuite and SSRFmap for testing, the in-
strumentation module of SSRFuzz does not run to exclude
the impact of the instrumentation module on their testing
efficiency.



Application Version Files LLoC Vulns Sink Func Characterization CVSS

Joomla [18] 4.3.4 7,878 976,161
Unassigned curl exec Update Download N/A
Unassigned curl exec Update Download N/A
Unassigned curl exec Extended Download N/A

Drupal [13] 8.9.20 19,490 1,520,484 Unassigned curl exec Update Download N/A
Unassigned curl exec Update Download N/A

phpBB [28] 3.3.10 3,593 416,143 Unassigned curl exec Image Editing N/A

Z-BlogPHP [46] 1.7.2 438 73,204 CVE-2022-40357 get headers Image Editing 9.8

WonderCMS [14] 3.1.3 20 3,563
CVE-2024-27561 curl exec Theme Download N/A
CVE-2024-27561 curl exec Extended Download N/A
CVE-2024-27563 curl exec Extended Download N/A

CCV [20] dca50eb 702 333,882 CVE-2022-31393 curl exec Image Editing 9.1

KityMinder [19] v1.3.5 402 53,391 CVE-2022-31830 curl exec Image Editing 9.1

ChatGPT(Web Client) [5] 51eaaa4 19 11,043 CVE-2024-27564 file get contents Image Editing N/A

Ecommerce [3] d7900dc 1,185 169,702 Unassigned ftp connect � File Management N/A

rConfig [31] 3.9.4 271 76,440
CVE-2023-39108 file File Management 8.8
CVE-2023-39109 file Configuration File Management 8.8
CVE-2023-39110 file Configuration File Management 8.8

WeBid [43] 1.2.2 653 90,101 CVE-2022-41477 fopen File Management 9.1

MonstaFTP [21] v2.10.3 4,440 344,093 CVE-2022-31827 curl exec File Management 9.1

JizhiCMS [15] 2.2.5 487 167,090

CVE-2022-31388 curl exec Extended Download N/A
CVE-2022-31390 curl exec Template Download 9.1
CVE-2022-31390 fopen Template Download 9.1
CVE-2022-27429 curl exec Extended Download 9.8

Nbnbk [2] 532bfdc 2,951 587,135 CVE-2022-31386 file get contents File Management 9.1

iCMS [16] v7 1,222 193,574 CVE-2022-41496 curl exec Resource Loading 9.8

TABLE 1: New SSRF vulnerabilities discovered by SSRFuzz. CVSS scores greater than 9 are considered critical
vulnerabilities. � indicates our newly discovered SSRF sink.

Application BurpSuite SSRFmap SSRFuzz

WordPress 0(0) 0(0) 0(0)
Joomla 0 0 3
Drupal 0 0 2
phpBB 0 0 1

Z-BlogPHP 0 0 1
WonderCMS 0(0) 0(0) 4(1)

CCV 1 0 1
KityMinder 0 0 1

ChatGPT(Web Client) 0 1 1
Ecommerce 0 0 1

rConfig 0(0) 3(1) 4(1)
WeBid 0 0 1

MonstaFTP 0 0 1
JizhicCMS 4 0 4

Nbnbk 0 1 1
NavigateCMS 1(1) 0(0) 1(1)

iCMS 0 1 1

Total 6(1) 6(1) 28(3)

TABLE 2: Results of vulnerabilities discovered by Burp-
Suite, SSRFmap, and SSRFuzz across various web applica-
tions. Numbers in parentheses indicate the count of known
vulnerabilities verified by each tool.

Performance Comparison. The time consumption by
BurpSuite, SSRFmap, and SSRFuzz to detect vulnerabilities
in web applications is comparatively presented in Figure 6.
SSRFuzz emerges as the more time-efficient tool for detect-
ing SSRF vulnerabilities, significantly outpacing BurpSuite
and SSRFmap. Statistical analysis from our test dataset
shows that SSRFuzz achieves an average efficiency improve-
ment of 90.3% over BurpSuite and 70.4% over SSRFmap.
This superior speed can be attributed to SSRFuzz’s dynamic
taint inference module, which facilitates rapid identification
of potential vulnerabilities. The dynamic taint inference
module is specifically engineered to quickly identify user-
controllable parameters in HTTP requests that could lead to
SSRF vulnerabilities. Once such parameters are confirmed,
SSRFuzz progresses to the fuzzing stage, where it employs
specialized payload generator and detector modules to verify
the presence of SSRF vulnerabilities. In contrast, BurpSuite
and SSRFmap indiscriminately perform black-box fuzzing
on all input parameters, which is inherently more time-
consuming. To ensure the robustness of the data, each web
application underwent two rounds of testing, and the average
time for vulnerability detection was calculated.

Vulnerability Discovery Comparison. We summarize
the number of vulnerabilities found for each tool in this
experiment in Table 2. SSRFuzz emerged as the most ef-



Figure 6: Time consumption comparison among BurpSuite, SSRFuzz, and SSRFmap across various web applications.

fective, discovering 28 vulnerabilities, whereas BurpSuite
and SSRFmap detected only 6 each. There are two main
reasons behind SSRFuzz’s superior performance, particu-
larly in detecting 0-day vulnerabilities. First is SSRFuzz’s
comprehensive payload generation strategies, tailored to var-
ious SSRF attack scenarios. Its mutation strategy is par-
ticularly effective in generating payloads that can bypass
string-filtering checks, which was crucial in discovering the
SSRF vulnerability in WonderCMS (more details in Section
5.5). In contrast, BurpSuite and SSRFmap rely on a static
set of payloads and lack the capability for payload muta-
tion, making them less effective against web applications
equipped with string-filtering checks. The second reason
for SSRFuzz’s success is that it incorporates six different
detection strategies, covering broader attack scenarios com-
pared to BurpSuite’s three strategies and SSRFmap’s single
strategy. While BurpSuite mainly uses the OAST method
for detecting blind SSRF vulnerabilities, this approach is
vulnerable to false negatives caused by network delays, as
observed in its failure to detect the SSRF vulnerability in
MonstaFTP in the initial test. SSRFuzz, however, mitigates
this issue by employing a combination of network and file
monitoring strategies.

Vulnerability Causes. The sinks for each SSRF vulner-
ability identified in our research are enumerated in Table 1.
We have marked the newly discovered sinks in this study
with a lightning symbol (�). We can see that the newly
discovered sinks enable SSRFuzz to discover a vulnerability
previously overlooked by BurpSuite and SSRFmap. In addi-
tion, we quantified the use of various vulnerability detection
strategies across two rounds of testing. The statistical anal-
ysis showed that the VD3 strategy was implemented with a
likelihood of 1/7, highlighting its significance in identifying
SSRF vulnerabilities associated with socket-oriented sinks
such as socket_connect and ftp_connect.

5.5. Case Studies

We now discuss some interesting SSRF vulnerabilities
that SSRFuzz detected.

5.5.1. WonderCMS. The SSRF vulnerability discovered by
SSRFuzz in WonderCMS (3.1.3) [14] is shown in Listing 3.
In this case, the input provided via the pluginThemeUrl
parameter is assigned to the $url variable. It then passes
through various functions, ultimately navigating to the
getFileFromRepo function, where it becomes part of an
HTTP request executed via curl_exec. The system’s de-
fensive mechanism, intended to validate URLs by identify-
ing ”https://github.com/” and ”https://gitlab.com/” using the
strpos function, proves insufficient. SSRFuzz skillfully
bypasses this defense by constructing payloads containing
these keywords, such as ”http://vulndetect.server/#https://gi
tlab.com/fuzz.” This instance serves as a dual revelation.
Firstly, it exposes a notable deficiency in understanding
SSRF vulnerabilities among web application developers.
This is evident from their inability to create effective sani-
tization functions. Secondly, it demonstrates the capabilities
of SSRFuzz in generating complex inputs tailored to trigger
SSRF vulnerabilities in web applications.

5.5.2. WeBid. WeBid (1.2.2), an extensively used open-
source auction software with over 100,000 downloads [43],
was found to have a critical SSRF vulnerability by SS-
RFuzz. This vulnerability is associated with our study’s
identified SSRF sink called fopen. NVD classified this
vulnerability as CRITICAL, with a CVSS score of 9.1.
The code snippet in Listing 4 reveals an SSRF vulnerability
within WeBid, resulting from inadequate security validation
for user input in the fromfile parameter. This oversight
permits unfiltered input to proceed directly into the sink
function called fopen. Initially, the developer’s intention
was seemingly to employ fopen to check file existence,
not realizing its capability to support multiple protocols
(e.g., http(s)://, ftp://, file://), inadvertently
introducing security threats. This vulnerability could be
exploited by attackers for various malicious purposes, such
as scanning internal networks or combining it with other
vulnerabilities to launch more impactful attacks. This case
underscores that SSRFuzz’s identified sinks can unveil more
SSRF vulnerabilities, which are often highly hazardous.

https://github.com/
https://gitlab.com/
http://vulndetect.server/#https://gitlab.com/fuzz
http://vulndetect.server/#https://gitlab.com/fuzz


5.5.3. Joomla. Joomla (4.3.4) [18] is a web application
that offers a wide range of sophisticated features, which
contributes to its widespread popularity. The complexity
of Joomla is primarily reflected in two aspects. First, the
complexity of its codebase, which heavily relies on PHP’s
dynamic characteristics, poses challenges for static analysis
tools. Second, the diverse types, large quantities, and var-
ious combinations of HTTP request parameters in Joomla
expand the scope of fuzzing. In Joomla’s program execution
path, the value introduced by the HTTP request parameter
customurl has to go through 17 function calls to reach
the request function invoked by the $uri parameter.
This $uri parameter is then used when the curl_exec
function initiates the HTTP request. This complex program
execution path poses a considerable challenge for static
analysis tools. Especially in PHP web applications, it is
difficult for static analysis tools to construct such complex
sequences and find vulnerabilities within them. This case
demonstrates SSRFuzz’s ability to quickly point out input
parameters that potentially trigger an SSRF vulnerability in
complex web applications and utilize fuzzing techniques to
reveal the SSRF vulnerability.

5.5.4. rConfig. rConfig (3.9.4) [31] is a robust network
configuration management software used in enterprise en-
vironments that helps users efficiently manage configura-
tions on heterogeneous networks. SSRFuzz discovered an
SSRF vulnerability in rConfig. The application gets the user-
specified input value through the HTTP parameter path_a
and stores this input in the $path_a variable. Then, it uses
the diff class to compare files referenced by $path_a
and $path_b. The SSRF vulnerability emerges when the
doDiff method in the diff class invokes the file
function to read the file without sanitizing the $path_a
value beforehand. This vulnerability is categorized as a high-
security risk for two primary reasons. First, this SSRF vul-
nerability is caused by the file function, which supports
using various protocols to initiate network requests, includ-
ing file://, http://, and ftp://. Second, rConfig is
an automated network management software, but by exploit-
ing this SSRF vulnerability, we can scan internal networks
and even read sensitive configuration files. Therefore, NVD
has given it an 8.8 HIGH CVSS score. This vulnerability
case demonstrates that the SSRF vulnerability can pose
serious security threats in specific scenarios, especially to
web applications with network management capabilities.

6. Discussion and Limitations

Languages supported. Security threats of SSRF, an
adversarial object, have existed in not only PHP but also
other programming languages, including Python [17], Java
[30], Ruby [8], and .NET [33]. Depending on SSRF security
risk, an adversary conducts various malicious behaviors.
Although this paper is an in-depth study of SSRF vulner-
ability in PHP web applications, the approach of finding
and modeling SSRF vulnerability in this paper can also be
extended to other programming languages.

Fuzzing technology. We did not employ the coverage-
guided fuzzing due to the consideration of balancing effi-
ciency and the identification of vulnerabilities. Because we
focus on testing SSR-related paths rather than the whole
web application, coverage-guided fuzzing could inadver-
tently spend significant time probing paths unrelated to SSR
functions. Prior studies underscore that such an approach
can considerably extend fuzzing durations [82]. Therefore,
we developed SSRFuzz to enhance the efficiency of vulnera-
bility detection, utilizing dynamic taint inference and black-
box fuzzing. The dynamic taint inference enables SSRFuzz
to provide developers with the vulnerable code segments
and the program execution path after discovering the SSRF
vulnerability. Additionally, our black-box fuzzing approach,
tailored for SSRF vulnerabilities, can autonomously gener-
ate PoCs. These insights assist developers in rapidly iden-
tifying and rectifying SSRF vulnerabilities and deepening
their understanding of such vulnerabilities.

Web crawler.. The crawler component within SSRFuzz
leverages crawlergo, an advanced open-source crawling tool.
However, it inherits certain limitations from crawlergo, in-
cluding the challenge of handling CSRF tokens and unique
identifiers in forms and dynamic links. This limitation can
lead to servers rejecting some requests by the server.

Mitigation. The premise of mitigation measures is that
developers should review the purpose and intended use of
the SSR functionality in their applications. It is crucial to
assess whether allowing the web application to load arbitrary
resources aligns with its intended behavior. If so, the mitiga-
tions developers can take include blocking network access
from the web application to other internal systems and for-
tifying the web application defenses by removing access to
services available on the local loopback adapter. If arbitrary
resource loading is not part of the intended functionality,
developers should establish an allow list and restrict access
to any URLs not on this list. However, considering that
attackers can use IP (e.g., 127.0.0.1) binding to allow list
domains to bypass the allow list restrictions [4], it’s essential
for developers to verify that resolved IP addresses from user-
provided domain names are on the allow list. To prevent
DNS rebinding attacks, the DNS resolver used to validate
the allow list should be the same as the resolver used to send
the actual requests. Moreover, developers can further bolster
security by implementing strict network-level policies that
restrict outbound requests to known security domains and IP
ranges, which can provide an additional layer of security.

Legality and ethicality. This research has not raised any
legal or ethical issues. We downloaded the source code from
the vendors for local analysis and responsibly reported all
vulnerabilities to the CVE Numbering Authority (CNA) [10]
and respective vendors. We have contacted all the developers
for the SSRF vulnerability found in Section 5.3. To date, 11
vendors have acknowledged and fixed the reported vulner-
abilities. We will continue to communicate with the other
vendors throughout the vulnerability disclosure process.



7. Related Work

7.1. Web Application Vulnerabilities Discovery

There is a vast volume of studies on finding vulnerabil-
ities in PHP applications, including XSS and SQL injection
[62], [85], [86], [87]. Dahse and Holz implemented a tool
called RIPS to detect bugs with taint analysis after precisely
modeling PHP built-in functions [55]. Backes et al. [52]
proposed an interprocedural analysis technique based on
code property graphs to identify web application vulnerabil-
ities utilizing programmable graph traversals. Huang et al.
introduced WebSSARI to detect insecure information flow
using a typestate-based static analysis algorithm [62], [64].
Xie et al. [86] presented a three-tier analysis for capturing
information at the intra-block, intra-procedural, and inter-
procedural levels. Pixy [61] performed additional alias and
literal analysis to provide more comprehensive and precise
results. Son et al. [77] presented static analysis techniques
that identify semantic bugs and access-control bugs.

There are other works that use fuzzing techniques to
find vulnerabilities. In essence, fuzzing is mostly a random
process, and thus, vulnerability information-driven is crucial
to the success of fuzzing, which significantly contributes to
avoiding redundant testing [65], [84]. Eriksson et al. [58]
propose a data-driven black-box scanning approach to en-
hance vulnerability scanning. Gauthier et al. [59] integrated
state-aware crawling, type inference, coverage, and taint
analysis into a black-box fuzzer to discover vulnerabilities
efficiently. FUSE [63] finds file upload vulnerabilities in
PHP applications by generating mutated upload requests
from seed files, where mutations are designed to bypass
content filtering checks while preserving executability con-
straints. FUGIO [71] is the first automatic exploit generation
tool for PHP object injection vulnerabilities that identifies
promising property-oriented programming chains and gen-
erates exploits through static analysis, dynamic analysis,
and feedback-driven fuzzing. However, none of these efforts
have delved into discovering SSRF vulnerabilities. Inspired
by existing works, SSRFuzz has introduced several essential
designs to discover SSRF vulnerabilities effectively, and the
evaluation results have demonstrated their helpfulness.

Many symbolic execution studies have attempted to val-
idate various types of vulnerabilities [49], [51], [77], [80],
such as file upload, file inclusion, or SQL injection, but no
prior study has addressed validating SSRF vulnerabilities.
Huang et al. [60] conducted symbolic execution to assess
the practicality of uploading arbitrary files with PHP-style
extensions. They identified PHP built-in functions associated
with file writing, for example, move_uploaded_file, as
prospective vulnerability points. To achieve this, they formu-
lated a reachability constraint to guarantee the accessibility
of these functions from a tainted source, namely, $_FILES.
Furthermore, they devised extension constraints to confirm
the presence of PHP-style file extensions in the uploaded
PHP files.

7.2. Server-Side Requests

There are few studies specifically dedicated to server-
side requests, and even fewer explore the security risks
of server-side requests. Orange Tsai [24] presented their
findings in 2017 that differences in URL parsers in trending
programming languages can lead to filter bypass and, thus,
SSRF vulnerabilities in seemingly safe code implementa-
tions. Stivala and Pellegrino [79] in 2020 investigated how
link previews on social media platforms can be manipulated
to create benign-looking previews for malicious links. While
the underlying link preview implementation uses server-side
requests to obtain this information, SSR security was not
studied as part of their paper. Marius Muschd et al. [67]
conducted a wide-ranging study on the security of automated
browsers running server-side in 2022 to reveal the security
issues that such potentially vulnerable browsers can cause
when requesting links provided by users. However, they still
have not examined how the program itself contributes to
the cause of the SSRF vulnerability. Pellegrino et al. [72]
conducted a study on the security threats arising from the
abuse of the server-side request (SSR) communication pat-
tern. To evaluate the security implications of SSRs and the
prevalence of this issue, they developed a black-box scanner
called Guenther for detecting SSR misuses and analyzed the
behavior of 68 online services. In contrast, our approach
combines dynamic taint analysis and fuzzing to effectively
discover SSRF vulnerabilities in 27 popular open-source
web applications, which are deployed by millions of online
websites across the Internet.

8. Conclusion

In this paper, we conducted the first systematic study
of SSRF vulnerability in PHP. We presented an automated
tool, SSRFuzz, a vulnerability-driven web fuzzer for SSRF
vulnerabilities. SSRFuzz utilizes dynamic taint inference to
detect potential SSRF vulnerability. We evaluated SSRFuzz
on 27 real-world PHP applications. SSRFuzz discovered 28
SSRF vulnerabilities, including 25 previously unreported,
and 16 new CVE IDs were assigned, demonstrating the
practical utility of SSRFuzz in SSRF vulnerability detection.
We hope our work can aid the community in addressing the
rising threats of SSRF vulnerabilities.
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Appendix A.

A.1. A prompt for test case generation

We manually review the code snippets generated by
ChatGPT to ensure their accuracy. Our evaluation reveals
that ChatGPT achieves an 89% success rate in generating
test cases.

Test Case Generation Prompt

You are a world-class PHP developer with an eagle eye
for unintended bugs and edge cases. You don’t need to
offer corrections or explanations, just generate the precise
code requested.
A code example that uses the file_get_contents
function to obtain a resource specified by a URL is:

<?php
$url=$_GET[’url’];
$resourceContent =

file_get_contents($url);
foreach ($resourceContent as $line) {

echo $line;
}

Now, I need you to generate a code that uses the
#{FuncName} function to obtain the resource specified by
a URL. Suppose the function has information about the
return value; output this information. Otherwise, nothing
needs to be output. Don’t explain the code or say extra
words. Generate the code block itself.

Model Output

<?php
$url = $_GET[’url’];
$handle = fopen($url, "r");
if ($handle) {

while (($line = fgets($handle))
!== false){

echo $line;
}
fclose($handle);

}

A.2. An SSRF vulnerability in WordPress.

1 <methodCall>
2 <methodName>pingback.ping</methodName>
3 <params>
4 <param>
5 <value><string>http://evil.tld</string></value>
6 </param>
7 <param>
8 <value><string>http://blog.tld/?p=1</string></

value>
9 </param>
10 </params>
11 </methodCall>

Listing 2: An XML data that can trigger SSRF vulnerability
in WordPress

Due to an insufficient comprehension of WordPress
code, tools such as BurpSuite, SSRFmap, and SSRFuzz are
incapable of constructing XML data in the requisite format
(details in Listing 2), nor do they facilitate the generation of
”pingback.ping” calls. This limitation precludes them
from triggering and consequently identifying the SSRF vul-
nerability in this case.

A.3. An SSRF vulnerability in WonderCMS.

1 <?php
2 // index.php
3 public function addCustomThemePluginRepository(): void
4 {
5 ...
6 $url = rtrim(trim($_POST[’pluginThemeUrl’]), ’/’);
7 ...
8 switch (true) {
9 case strpos($url, ’https://github.com/’) ===

false && strpos($url, ’https://gitlab.com/’) ===
false:

10 $errorMessage = ’Invalid repository URL. Only
GitHub and GitLab are supported.’;

11 ...
12 $this->cacheSingleCacheThemePluginData($url, $type

);
13 ...
14 }
15 ...
16 //index.php
17 public function getFileFromRepo(string $file, string

$repo = self::WCMS_REPO): string
18 {
19 $repo = str_replace(’https://github.com/’, ’https

://raw.githubusercontent.com/’, $repo);
20 $ch = curl_init();
21 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
22 curl_setopt($ch, CURLOPT_URL, $repo . $file);
23 $content = curl_exec($ch);
24 ...
25 }

Listing 3: An SSRF vulnerability in WonderCMS. The code
is simplified for demonstration purposes.

A.4. An SSRF vulnerability in WeBid.

1 <?PHP
2 // getthumb.php
3 ...
4 $fromfile = (isset($_GET[’fromfile’])) ? $_GET[’

fromfile’] : ’’;
5 ...
6 // control parameters and file existence
7 if (!isset($_GET[’fromfile’]) || $fromfile == ’’) {
8 ...
9 } elseif (!file_exists($_GET[’fromfile’]) && !fopen(

$_GET[’fromfile’], ’r’)) {
10 ...
11 }
12 ...

Listing 4: An SSRF vulnerability in WeBid. The code is
simplified for demonstration purposes.

A.5. Payloads and Operations



TABLE 3: List of probe payloads and the SSRF oracle of each payload.

OP Probe Payload SSRF oracle

O1 file:///flag Accessing flag files
O2 dict://127.0.0.1:8181/info Monitoring Server receives the request
O3 sftp://127.0.0.1:8181/ Monitoring Server receives the request
O4 ldap://127.0.0.1:8181/ Monitoring Server receives the request
O5 tftp://127.0.0.1:8181/ Monitoring Server receives the request
O6 gopher://127.0.0.1:8181/ POST%20/flag%20HTTP/1.1%0D%0A Monitoring Server receives the request
O7 ssh://127.0.0.1:22/ Accessing the port monitored by Monitoring Server
O8 http://127.0.0.1:8181/ Monitoring Server receives the request
O9 https://127.0.0.1:8181/ Monitoring Server receives the request

O10 expect://127.0.0.1:8181/ Monitoring Server receives the request
O11 ogg://127.0.0.1:8181/ Monitoring Server receives the request
O12 ftp://127.0.0.1:8181/ Accessing the port monitored by Monitoring Server
O13 php://filter/resource=http://127.0.0.1:8181/ Monitoring Server receives the request
O14 compress.bzip2://http://127.0.0.1:8181/archive.gz Monitoring Server receives the request
O15 compress.zlib://http://127.0.0.1:8181/myarchive.gz Monitoring Server receives the request
O16 zip:///flag#bar Accessing flag files
O17 rar://%2Fflag#file.txt Accessing flag files
O18 phar:///flag.phar Accessing flag.phar files
O19 glob://flag dir Accessing flag dir directory
O20 /flag Accessing flag files
O21 IP:PORT Accessing the port monitored by Monitoring Server

TABLE 4: List of filling operations for each URL component.

OP Description Component

F1 Filling in the protocols supported by PHP (e.g. http, ftp, etc.) Scheme
F2 Filling in 127.0.0.1 Userinfo,Host/Domain
F3 Filling in the domain name or IP address of the server that has the 302 redirection

function
Userinfo, Host/Domain

F4 Filling in the IP address or domain name of the HTTP OOB server Userinfo, Host/Domain
F5 Fill in the subdomain of the DNS OOB server, where the third-level domain name is

randomly generated characteristic characters.
Userinfo,Host/Domain

F6 Filling in the IP address or domain name of the Port monitor. Userinfo,Host/Domain
F7 Filling in the domain name or IP address extracted from the source code. Userinfo,Host/Domain
F8 Filling in the Top 10 ports (21, 22, 25, 80, 443, 1433, 5432, 3306, 8080, 6379). Port
F9 Filling in the randomly generated feature string. Path
F10 Filling in the file path ”/etc/passwd” Path
F11 Filling in the file path ”/flag” (A file that is being monitored for access status) Path



TABLE 5: List of mutation operations for each initial payload.

OP Description Explanation

M1 Replacing 127.0.0.1 with localhost a presentation format for IP
M2 Replacing 127.0.0.1 with 0.0.0.0 a presentation format for IP
M3 Replacing 127.0.0.1 with [::] or [::1] IPv6 addresses
M4 Replacing 127.0.0.1 with [0:0:0:0:0:ffff:127.0.0.1] IPv6 addresses
M5 Replacing 127.0.0.1 with 0000::1 IPv6 addresses
M6 Replacing 127.0.0.1 with 127.127.127.127 a presentation format for IP
M7 Replacing 127.0.0.1 with 127.0.1.3 a presentation format for IP
M8 Replacing 127.0.0.1 with 127.0.0.0 a presentation format for IP
M9 Replacing 127.0.0.1 with 0 shortened IPs

M10 Replacing 127.0.0.1 with 127.1 shortened IPs
M11 Replacing 127.0.0.1 with 127.0.1 shortened IPs
M12 Converting IP address to dotless decimal a presentation format for IP
M13 Converting IP address to dotted octal a presentation format for IP
M14 Converting IP address to dotted octal with padding a presentation format for IP
M15 Converting IP address to dotted hexadecimal a presentation format for IP
M16 Converting IP address to dotless hexadecimal a presentation format for IP
M17 Convert only parts of the IP address to decimal/octal/hexadec-

imal
a presentation format for IP

M18 IPv4-compatible IPv6 address IPv6 addresses
M19 IPv4-mapped IPv6 addressess IPv6 addresses
M20 Inserting %09 into random position URL encoding for tab
M21 Inserting %0A into random position URL encoding for linefeed
M22 Inserting %0D into random position URL encoding for creturn
M23 Inserting %3A into random position URL encoding for ”:”
M24 Inserting %3B into random position URL encoding for ”;”
M25 Converting characters to enclosed alphanumerics PHP will parse enclosed alphanumerics into numbers
M26 Single encode the characters in the Path component randomly Bypassing Deny Lists with PHP Decoding Features
M27 Double encode the characters in the Path component randomly Bypassing Deny Lists with PHP Decoding Features
M28 Replacing scheme with 0:// Bypassing URL validation of the filter var() function
M29 Inserting feature characters and request object combinations

at random positions between URL components.
Bypass access control policies

M30 insert File Suffix in Path Component Bypassing validation of URL access to file extensions
M31 Splicing ”.xip.io” after the normal domain name or IP xip.io is a magic domain name that provides wildcard DNS

for any IP address.

Feature characters include (".","!", "?","
","/","#",";",":";"@","&", "%ff@","%ff.","%25253F@","%253F@","%3F@","@",":80@","%20@","%09@","%252F@")
Request Object in Table includes the IP and domain name of the 302 redirection server, the IP and domain name extracted from the source code, the
server IP address of HTTP Out Of Band (OOB), the server domain name of DNS OOB, and ”127.0.0.1”.



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper introduces and evaluates SSRFuzz, a tool
to automatically detect SSRF vulnerabilities in PHP ap-
plications. The approach consists of three phases: a com-
prehensive detection of PHP SSRF sink functions using
a semi-automated strategy supported by LLMs; dynamic
taint tracking based on PHP code instrumentation to iden-
tify data flows from user inputs to SSRF sinks; mutation-
based fuzzing to discover SSRF vulnerabilities. SSRFuzz is
evaluated on 27 real-world PHP applications and compared
against existing tools (Burp Suite and SSRFmap). The tool
identified 28 vulnerabilities (25 are novel), obtaining 16
CVEs.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability

B.3. Reasons for Acceptance

1) The paper presents an effective tool to detect SSRF
vulnerabilities in PHP applications. Based on this work,
future research can be conducted to improve the per-
formance of the tool (e.g., reduce false negatives by
supporting additional payloads), detect other classes
of vulnerabilities, and target additional programming
languages.

2) SSRFuzz identifies multiple impactful SSRF vulnera-
bilities in popular PHP applications, including Joomla,
Drupal, and phpBB, resulting in 16 CVEs.

B.4. Noteworthy Concerns

1) The novelty of the reported SSRF sinks is not well
justified. Non-academic research has already identified
many of the sinks the authors claim to be novel.
Furthermore, the methodology is similar to existing
work in Web application fuzzing and does not compare
with previous research on SSRF detection (Pellegrino
et al., Uses and Abuses of Server-Side Requests. RAID
2016).

2) The evaluation dataset comprises 27 applications,
which is relatively small to draw general conclusions
about the effectiveness and generalizability of SSR-
Fuzz. It is unclear whether the application developers
confirmed all reported vulnerabilities and the paper
does not precisely characterize the discovered issues.

3) False negatives (FNs) and false positives (FPs) are
not thoroughly discussed. For instance, monitored re-
quests (e.g., DNS requests) may be the effect of legit-
imate functionality rather than revealing the presence
of SSRF vulnerabilities

Appendix C.
Response to the Meta-Review

We sincerely thank the reviewers for their valuable feed-
back. In response to the noteworthy concern:

1) We have open-sourced the identified SSRF sinks on
Github to justify their novelty. We have added a com-
parison with Pellegrino’s work in the related work to
clarify the differences.

2) In our methodology, we utilize white-box testing ap-
proaches that necessitate the local deployment of the
target web applications, leading to fewer applications
being tested compared to black-box testing methods.
Among the 27 web applications we tested, 17 are
popular and complex, including well-known platforms
such as WordPress and Drupal. Additionally, we tested
10 other applications previously evaluated in earlier
studies, which could demonstrate the effectiveness and
generalizability of SSRFuzz.

3) For false negatives, SSRFuzz can identify 3 out of 4
known vulnerabilities, missing 1 vulnerability. For false
positives, we have manually reviewed all the vulnera-
bilities and found all vulnerabilities can be exploitable,
with no false positives.
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