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Abstract—To combat eavesdropping and injection attacks,
wireless networks widely adopt encryption to provide confi-
dentiality and integrity guarantees. In this paper, we present
a novel and generic attack, termed LenOracle, which can
hijack the TCP/UDP connections over encrypted wireless
networks (e.g., 5G/4G/3G and Wi-Fi) via packet injections
from the Internet. Due to the design nature of wireless
networks and stream ciphers they used, the length of IP
packets being transmitted can be acquired by radio sniffing.
It thus provides a side channel for adversaries. We found that
adversaries could utilize this side channel with TCP features
to infer the presence of a connection, infer the protocol state
(sequence number, acknowledge number) of the connection,
and finally hijack TCP/IP connections over wireless net-
works. Through real-world experiments in commercial LTE
networks and real Wi-Fi networks, we demonstrated that
the LenOracle attack is practical and severe against both
TCP and UDP connections. For the former, we successfully
injected a fake short message into a victim TCP connection;
For the latter, we were able to inject a fake DNS response
into a UDP connection and poisoned the DNS cache of the
victim device. Following the responsible disclosure policy, we
have reported our findings and mitigation recommendations
to GSMA and Wi-Fi Alliance. The GSMA acknowledged that
the issue affects 5G/4G/3G, notified all its members (opera-
tors and vendors worldwide) of this issue, and highlighted
the mitigation we proposed.

Index Terms—Network Security, Mobile Security, TCP/IP
Hijacking Attack, Side Channel

1. Introduction

Wireless networks have become a pivotal avenue for
Internet access. Compared with wired networks, wireless
networks are inherently more susceptible to eavesdropping
and injection attacks. In response, the community has
developed various security protocols that ensure confi-
dentiality and integrity. For instance, the Wi-Fi Alliance
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presents Wi-Fi Protected Access (WPA) protocols to pro-
tect Wi-Fi networks. The 3GPP group introduces encryp-
tion mechanisms to protect 5G/4G/3G mobile networks.
Those encryption mechanisms provide a strong security
guarantee against packet leakage or injection attacks.

In this paper, we propose a novel attack, named LenO-
racle Attack. This attack enables an off-path attacker to in-
fer the presence and hijack arbitrary TCP/IP connections,
over the victim wireless network protected by encryption
mechanisms. Compared with previous attacks [38], [46],
this attack is general and affects multiple major wireless
protocols, including but not limited to 5G/4G/3G and Wi-
Fi.

The root cause of the vulnerability lies in the inherent
characteristics of wireless networks. Wireless networks
widely adopt stream ciphers to protect their transmission.
By the nature of stream ciphers, the length of cipher-
text is equal to the length of the corresponding plain-
text. Therefore, it is feasible to build a side channel
that observes the length of IP packets being transmitted
over wireless networks protected by stream ciphers (e.g.,
5G/4G/3G and Wi-Fi). This widely available side channel
seems to be trivial as it only tells the length. However,
we found that this trivial side channel, when combined
with the functionalities of NAT and TCP, can be exploited
to infer the presence and protocol state of TCP or UDP
connections. By employing a series of “guess-then-check”
strategies, this method enables the execution of sophisti-
cated TCP/IP hijacking attacks.

The attack follows a three-phase approach to infer
critical connection details and manipulate TCP/IP con-
nections. First, the attacker identifies active connections
by sending spoofed data packets for different four-tuples
(including the client’s IP address and port, the server’s
IP address and port) and observing which packets pass
through the NAT using a radio sniffer. This creates an
opportunity for the attacker to probe and infer the four-
tuple by exploiting the NAT device positioned before
the target client. Second, the attacker exploits challenge
ACK features to locate the sequence window by sending
spoofed reset packets to provoke challenge ACK responses
from the server, segmenting the sequence space to effi-
ciently find numbers within the server’s receive window.



Finally, the attacker infers acknowledge number and exact
sequence number by sending PSH-ACK packets, fine-
tuning the acknowledge and sequence numbers within
recognized windows through systematic probing and bi-
nary search methods, and ultimately pinpointing the exact
sequence and acknowledge numbers required to hijack the
TCP/IP connections.

We evaluated our attack in various metrics and demon-
strated its practicality and severity via real-world attack
scenarios. Specifically, we deployed the attack in two
real attack scenarios. The first attack scenario is a TCP
hijacking attack over a commercial LTE network. In this
scenario, the victim connection is the keep-alive TCP
connection of Rich Communication Service (RCS), which
allows short messages transmitted over TCP. We success-
fully launched a hijacking attack and injected a fake short
message into the victim user’s phone over the hijacked
connection. The second attack scenario is a UDP hijacking
attack over some real Wi-Fi networks like the coffee shop.
In this scenario, we targeted the victim’s DNS query
communication and hijacked the result of the query. These
experiments show that the LenOracle attack is practical
and easy to launch, while the consequence is damaging.

We have reported this issue and mitigation recommen-
dations to the standards organizations GSMA and Wi-
Fi Alliance, following the responsible disclosure policy.
GSMA acknowledged the issue does affect 5G/4G/3G
and appreciated our submission. They have notified all
its members (operators and vendors worldwide) of our
findings and highlighted the mitigation we proposed.

Contributions. In this paper, we make the following
contributions:

• A Novel Attack. We present LenOracle Attack, a
novel and significant threat to encrypted wireless
networks, which affects major wireless network
protocols, including 5G/4G/3G and Wi-Fi.

• Real World Evaluations. We deployed the attack
in two real attack scenarios, such as hijacking a
TCP connection of RCS over the LTE network and
hijacking a UDP communication of DNS over the
Wi-Fi network.

• Responsible Disclosure and Mitigation. We have
submitted our findings to the standards organi-
zations GSMA and Wi-Fi Alliance and received
acknowledgments of GSMA. We also propose sev-
eral mitigation approaches for this attack.

2. Background

2.1. Wireless Network Architecture

Figure 1 illustrates a typical architecture of an IP-
based wireless network, which consists of three compo-
nents: User Equipment (UE), wireless access point (eN-
odeB or AP), and back-end IP network. The back-end IP
network (e.g., the Internet) interconnects devices with the
IP protocol. Wireless access point enables the connected
UE to access the back-end IP network by radio [1], [15].

We emphasize three characteristics of wireless net-
works related to our research. Firstly, as the radio frame is
broadcast over the air, users are required to have a unique

User Equipment Wireless Access Point Internet

IP Packets
IP PacketsIP Packets

NAT

Encrypted Radio Frame

Figure 1. Typical architecture of IP based wireless network

radio ID, such as a Radio Network Temporary Identi-
fier (RNTI) in 5G/4G/3G and MAC address in Wi-Fi.
Secondly, encryption and integrity protection are widely
deployed to prevent eavesdropping and frame injection.
Finally, due to the scarcity of the radio frequency spec-
trum, stream ciphers are the most popular choice of frame
encryption scheme in wireless networks, which does not
require additional paddings to packets being transmitted.
In practice, both Wi-Fi and 5G/4G/3G networks take
stream ciphers as the encryption mechanism [2]–[4], [27],
[39], [49].

Based on these three characteristics, attackers seeking
to obtain the length of the IP data packet merely need
to imitate the victim (using its radio ID) to capture the
encrypted packets from the air and then calculate the
plain-text length by stream-cipher design.

2.2. Network Address Translation

Network Address Translation (NAT) is an indispens-
able technique in contemporary networking, primarily uti-
lized to alleviate the scarcity of public IPv4 addresses.
By translating the private IP addresses of hosts within a
local network to a single public IP address, NAT enables
multiple devices to access internet resources efficiently.
This process not only conserves valuable IPv4 space but
also obfuscates the internal network structure from the
external internet, thereby enhancing security. Furthermore,
the inherent design of NAT allows for significant flexibil-
ity in network administration and architecture, facilitating
seamless integration and changes within the network with-
out necessitating modifications on the broader internet.

Most people believe that NAT can effectively protect
the security of internal nodes, but this is not the case. We
found that NAT may act as a filter that accelerates the
four-tuple inference. Specifically, the attacker can encode
a unique length for each candidate four-tuple and send it.
Only the correct four-tuple can be sniffed from the air, as
it can be distinguished by its unique length. This is critical
for inferring UDP connection parameters. For TCP, since
NAT standards [16], [19], [24] do not require verification
of sequence numbers in TCP connections, the attacker can
also use the same trick to speed up the inference process.
We verified this in many Wi-Fi environments. Even for
NAT that has enabled sequence number verification, the
challenge ACK mechanism can be utilized to infer TCP
four-tuple.

2.3. Challenge ACK Mechanism

In order to defend blind in-window attacks, the IETF
community proposed a challenge ACK mechanism in RFC
5961 [41]. In short, the challenge ACK mechanism forces
the TCP peer to issue a challenge ACK in response to the
receipt of a packet that triggers challenge conditions. An
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TABLE 1. PREVIOUS HIJACKING ATTACKS OVER THE PAST DECADE VERSUS OUR WORK

Method Side Channel or Vulnerability Attack Requirements Affected Networks Affected Protocols

No Client Auxiliary No MITM LTE Wi-Fi TCP UDP

Cao et al. [9] Global challenge ACK rate limit ✓ ✓ ✓ ✓ ✓ ✗

Feng et al. [18] Shared IPID counter ✓ ✓ ✓ ✓ ✓ ✗

Chen et al. [14] Wi-Fi timing channel ✗ ✓ ✗ ✓ ✓ ✗

Vanhoef et al. [46] Key reinstallation vulnerabilities ✓ ✗ ✗ ✓ ✓ ✓

Rupprecht et al. [38] Lack of integrity protection ✓ ✗ ✓ ✗ ✓ ✓

Our work packet length leakage ✓ ✓ ✓ ✓ ✓ ✓

example of challenge conditions is where the SEQ number
falls in the window but is not exactly matched.

Theoretically, this mechanism could prevent blind in-
jection attacks unless the off-path attacker is able to guess
the exact same sequence number (with a small probability
of 1/232). Unfortunately, the challenge ACK mechanism
can be used as an auxiliary for protocol state inference. It
identifies the incoming packets with the correct state (e.g.,
SEQ Num, ACK Num) and responds with a challenge
ACK. As previous studies described [9], with a side chan-
nel that could observe the existence of challenge ACK,
adversaries could infer the state of a TCP connection of
the victim through the “guess-then-check” method.

We highlight only the necessary details related to our
study here. First, the modifications in processing the SYN
packets allow off-path adversaries to predict if a specific
TCP connection exists. As required in RFC 5961, if a
receiver sees an incoming SYN packet with four-tuple
belonging to an existing connection, regardless of the
sequence number, it must send back a challenge ACK to
the sender to confirm the loss of the previous connection.
Consequently, leveraging a side channel that can observe
the challenge ACK, an attacker is able to detect the four-
tuple of a victim’s TCP connection, such as the source
port.

Secondly, the modifications in processing the RST
packets allow off-path adversaries to predict if a guessed
sequence number is correct. The RFC 5961 requires the
receiver to simply drop the incoming RST packet with
a sequence number outside the valid receive window.
However, if the sequence number is in-window but does
not exactly match the expected next sequence number
(RCV.NXT), the receiver must send back a challenge ACK
to the remote peer.

Third, a much smaller valid ACK number range is
suggested by RFC 5961 as illustrated in Figure 2, and
it allows off-path adversaries to predict if a guessed ac-
knowledge number is correct. If a receiver sees an in-
coming ACK segment, it regards the packet as acceptable
only if the ACK number is not too old and not too
new, i.e., [SND.UNA - MAX.SND.WND, SDN.NXT].
The remaining ACK values will be in the range of the
challenge ACK window, as the specification requires the
receiver to perform a challenge ACK to the remote peer.

As these challenge conditions illustrate, the challenge
ACK mechanism introduces a valuable tool for adversaries
to infer the sequence number and acknowledge number of
the connection of victims.
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Figure 2. ACK window illustration

2.4. Previous Hijacking Attack

Hijacking attacks, particularly in the realms of
TCP/UDP connections, involve the unauthorized intercep-
tion and modification of data flows between two entities
over a network. Previous research found such attacks
can occur in both wired and wireless network scenar-
ios, often exploiting vulnerabilities or side channels in
certain protocol designs or implementations. We com-
prehensively compared our work with previous hijacking
attacks in Table 1. Notably, our attack does not rely on
additional requirements, such as client auxiliary or man-
in-the-middle (MITM) model, and is general to typical
wireless networks as well as TCP/IP protocols owing to
the characteristics of packet length leakage at a ubiquitous
low-layer level.

Specifically, many previous works typically have to
deploy non-privileged malicious scripts at the victim’s
device to observe side channels [14], [21], [36] or rely on
MITM model to lure the victim to connect to a fake base
station beforehand [38], [46]. Only a few work [9], [18]
are able to launch completely off-path hijacking attack,
however, these attacks usually depend on the implemen-
tation flaws in certain protocol, thereby limiting the real-
world attack scenarios and easy to be fixed.

3. Overview

3.1. Threat Model

As shown in Figure 3, our threat model concerns six
entities: Victim Client, Victim Server, Wireless Access
Point, NAT, Radio Sniffer, and Spoofed Server. The victim
client (e.g., a smartphone or personal computer) commu-
nicates with the victim server via a wireless access point
(e.g., eNodeB or AP) and NAT.

We assume an off-path adversary with two capabili-
ties: First, the attacker can sniff wireless frames with a
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TABLE 2. THREAT MODEL AND ATTACK CONSTRAINT

Side Constraint Optional Description Workaround

Attacker side
Geographical proximity ✗ Attacker must can sniffer packets from victim. High-gain antenna allows attackers to sniff from several miles away [17]

Spoofed server ✗ Attacker must can send spoofed packets from Internet No workaround, but it is feasible in practice [8]

Victim side

Plain-text communication ✗ Hijacking attacks require plaintext protocol, like RCS [51] Attackers can launch DoS attacks by resetting connections for encrypted protocols

Sufficient bandwidth ✗ Bandwidth should more than 1Mbps for TCP, 5Mbps for UDP No workaround, but it is common in practice(§5.2)

Specific NAT design ✓ NAT does not check sequence number, common in practice(§5.2) Attackers can search the NAT’s IP and port by challenge ACK mechanism (§4.2)

passive radio sniffer. This radio sniffer can capture the
radio frames between the victim client and the access
point. This is a basic requirement in wireless network
attacks (e.g., [38], [42], [44]–[46]), and a simple way
to achieve this assumption is to place the sniffer near
the geographical location of the victim’s client or access
point. Second, the attacker can send spoofed packets at
the IP layer with a spoofed server. This assumption is
still practical today, even though some mitigation against
address spoofing has been deployed. According to the
latest study [8], at least one-fifth of autonomous systems
(ASes) on the Internet do not filter packets with spoofed
source addresses.

For victims, those who use plaintext protocols for
communication, such as HTTP, SIP and DNS, are suscep-
tible to hijacking attacks. We selected SIP and DNS as tar-
gets and demonstrated that hijacking attacks can indeed be
successfully carried out on these protocols as mentioned
in §5.3. Those who use encrypted protocols, such as SSH,
are susceptible to DoS attacks by resetting the connection.
Previous work demonstrated that 12% website are still
using HTTP [10], [47], and many real-world RCS services
based on the SIP protocol lack encryption protection [51].
In addition, the effectiveness of the attack is constrained
by the victim’s bandwidth. For example, the default DNS
timeout for both Windows and Linux is 10 seconds, so
networks under 1Mbps UDP bandwidth may experience
failures due to timeout issues. We also summarize other
optional constraints in Table 2.

The goal of our attack is to infer the presence of a
given TCP/IP connection and execute hijacking attacks
over encrypted wireless networks. This is particularly
challenging because TCP/IP involves strict packet val-
idation on incoming packets, including checks for the
connection’s four-tuple (source IP, destination IP, source
port, destination port), sequence (SEQ) number, and ac-
knowledge (ACK) number. Moreover, due to the encryp-
tion protection, it’s impractical to extract such critical
information from the network traffic. Therefore, we de-
composed the attack implementation, first using some
techniques to probe the client’s public IP and then using
side-channel attacks to iteratively guess the port, SEQ, and
ACK numbers.

3.2. Attack Overview

To achieve this goal, we come up with our approach.
The core concept of our approach is to send spoofed
packets and observe whether the spoofed packets have
triggered responses or not over radio. We found while
the TCP/IP stack performs strict checks on the incom-
ing packets, in each check the TCP/IP receiver could
possibly generate responses depending on the validity of
the incoming packet. This enables us to probe and infer

Victim Client Wireless Access Point
(NAT)

Radio Sniffer
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Spoofed Server
(Attacker)

Victim Server
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spoofed packets from 

Internet

Cooperation

5. Attacker infer port, 
seq, ack number by 
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packet lengths, 

depicted in section 3.2

Internet

Figure 3. Threat model

the critical information of the targeted TCP/IP connection
subtly without directly decrypting the traffic.

Wireless networks widely adopt stream ciphers to
protect their transmission. By the nature of stream ciphers,
the length of ciphertext is equal to the length of the
corresponding plaintext. Therefore, it is feasible to build a
side channel that observes the length of IP packets being
transmitted over wireless networks protected by stream
ciphers (e.g., 5G/4G/3G and Wi-Fi).
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Radio Sniffer

Challenge ACK
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Figure 4. Overview of LenOracle attack

TABLE 3. PROTOCOL WEAKNESS EXPLOITED FOR EACH STEP

Step Prior knowledge Protocol weakness exploited Section

1 Server IP, Port Packet with correct four-tuple pass through NAT §4.2
2 - RST packet with SEQ in sequence window trigger Challenge ACK §4.3
3 - DATA packet with ACK in challenge ack window trigger Challenge ACK §4.4

The attacker can exploit this trivial side channel to
infer the presence of a TCP/IP connection and launch
a hijacking attack in three steps. Figure 4 and Table 3
illustrate the application of the length-based side channel,
and a comprehensive discussion of these steps follows.

Step 1: Detecting connection four-tuple. In this step,
the attacker determines if a given connection is established
between the client and the server. The key idea is to send
spoofed data packets with distinct payload sizes for dif-
ferent four-tuples and observe which packets pass through
the NAT using radio sniffers. Of these packets, only those
with a four-tuple matching an established connection can
traverse the NAT device and subsequently become observ-
able on the radio channel. Consequently, the attacker can
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infer the presence of a connection by observing the packet
length via radio sniffers. For a given TCP connection, the
server IP address and the server port are typically known
as they define the target we choose to attack. As the victim
client is behind a NAT device, the client source IP is the
public IP address of the NAT device. We present four
solutions to acquire the NAT’s IP address and verified their
effectiveness in §4.2. Another challenge is the source port
that the NAT uses. The maximum possible port range is
[1024, 65535]. We also developed techniques to optimize
the search efficacy in §4.2.

Step 2: Locating sequence window. With an active
connection’s four-tuple identified, the attacker now needs
to infer a valid sequence number acceptable by the server.
This step takes advantage of two TCP/IP features: (1) per
RFC 5961, the TCP receiver generates a challenge ACK
packet in response to an RST packet that contains an in-
window sequence number that does not match exactly the
expected value; (2) the challenge ACK packet has a fixed
specific length. Combining these two features, an attacker
can send spoofed packets with guessed sequence numbers
to trigger a challenge ACK. To improve search efficiency,
the attacker can segment the sequence number space into
blocks matching the receive window size, probing each
block with a hypothesized sequence number to identify
those within the receive window, as detailed in §4.3.

Step 3: Identifying acknowledge number and exact
sequence number. Once an acceptable sequence number
of an active connection has been determined, the attacker
must subsequently estimate a valid ACK number deemed
acceptable by the server. This step utilizes PSH-ACK
packets to provoke the challenge ACK: If a PSH-ACK
packet’s sequence number is an in-window sequence num-
ber and the ACK number falls within the challenge ACK
window, the receiver triggers a challenge ACK. Following
a similar methodology as with sequence number inference,
the attacker can infer whether the guessed ACK number
is within the challenge ACK window.

Next, utilizing the characteristics of the PSH-ACK
packets, the attacker continues to infer the acceptable
ACK number (SND.UNA) and the exact SEQ num-
ber (RCV.NXT). Firstly, the attacker fixes the sequence
number as an in-window sequence number, then the at-
tacker progressively decreases the ACK number until it
reaches the left boundary of the challenge ACK window
(SND.UNA - 2G). Secondly, with the ACK number held
within the challenge ACK window, the attacker reduces
the sequence number gradually until it reaches the left
boundary of the receiver’s window (RCV.NXT). This pro-
cess can be optimized using binary search as detailed in
§4.4.

4. End-to-End Attacks

In this section, we elaborate on the methodology for
executing end-to-end attacks.

Initially, the attacker must observe the encrypted wire-
less frames transmitted from the wireless access point
to the targeted victim client. Further discussion will take
place in §4.1.

Subsequently, the attacker will complete the attack by
following three steps:

Step 1: the attacker determines whether a given con-
nection has been established between the client and the
server by employing connection four-tuple inference, as
detailed in §4.2.

Step 2: the attacker infers a sequence number that is
located in the server receiver window, discussed further
in §4.3.

Step 3: the attacker identifies both the acknowledge
number (SND.UNA) and the exact sequence number
(RCV.NXT) deemed acceptable by the server, as described
in §4.4.

Throughout the execution of the aforementioned attack
process, the attacker needs to consider several practical is-
sues, including noise and packet loss, which are addressed
in §4.5.

4.1. Preliminary Preparations

To execute the attack, the attacker must first capture
encrypted frames transmitted from the wireless access
point to the victim client. As described in §2.1, this
requires the attacker to obtain the RNTI (for LTE) or the
MAC address (for Wi-Fi).

To obtain RNTI, the attacker first maps the phone
number to M-TMSI by parsing the paging message [40],
and then maps the M-TMSI into RNTI by parsing Random
Access Response, as well as Contention Resolution Iden-
tity, sniffed during the Random Access Procedure [38].
After this, the attacker could use an open-source LTE
project termed srsLTE [23] to obtain encrypted frames.

To obtain the MAC address, the attacker could use
the aircrack-ng tool. For example, they can use airodump-
ng to identify the Wi-Fi channel, then set the network
interface card (NIC) to monitor mode and align it with the
detected channel. Subsequently, the attacker collects Wi-
Fi frames and analyzes them, using the device’s OUI and
other information to determine the victim’s MAC address,
which can then be verified through further steps.

4.2. Detecting connection four-tuple

In this phase, the attacker determines if a given con-
nection is established between the client and the server
by probing whether a specific four-tuple (client IP, client
port, server IP, server port) is currently active. For a given
connection, the IP address and port of the victim server
are typically known. For example, Google’s DNS server
IP and port is ‘8.8.8.8’ and ‘53’. As the client is behind
NAT devices, the victim client’s IP is the public IP of NAT,
which can be obtained in advance via various techniques.

Acquiring the client public IP address. We discuss
four ways to obtain the IP address of the NAT gateway:
(1) The attacker can obtain the public IP of the NAT
server through the protocol features. For example, by
exploiting a feature of the RCS protocol, the attacker
can acquire the IP address of the victim’s client with-
out interaction [51]. Specifically, the attacker sends an
RCS media message containing a crafted media preview
link pointing to the attacker’s server. Listing 1 shows an
example of such an RCS message, where the attacker
replaces the attacker’s IP field with their own in
the url attribute within the data block. Upon receiving
the message, the victim’s client automatically loads the
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thumbnail from the attacker’s server. This action causes
the victim’s client to send a request to the attacker’s
server, thereby exposing its public IP address. (2) The
attacker can also infer the public IP of the NAT server
via side channels. In our threat model, the attacker knew
the victim’s geo-location and the base station the victim
connects to, thus, the possible public NAT IP can be
enumerated in advance. As the search space of the IP
pool under a given base station is limited, inferring the
accurate IP address of the victim client by the side channel
becomes feasible. The attacker can limit the NAT IP
addresses to a manageable list of candidate IPs, denoted
as {IP-Guessm | 1 ≤ m ≤ M}. In the subsequent port
inference process, packets are sent to various ports of these
IP addresses. By observing the channel and determining
for which specific IPs the packets can be detected in the
channel, the true IP can be identified. (3) The attacker
can also lure the victim to visit a website to collect the
public IP from NAT in advance. (4) If the attacker and the
victim are on the same Wi-Fi network, the attacker can
easily obtain the public IP using ICMP messages with
the record route field. We also conducted experiments
to verify the effectiveness of the four approaches. For
the first approach, we tested popular RCS-enabled phones
(Xiaomi, Redmi, ZTE, Samsung) in real-world operators
and confirmed that the NAT IP can be revealed without
victim interaction. For the second, third, and fourth ap-
proaches, we verified their effectiveness across 22 tested
wireless routers in Table 4.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <file xmlns="urn:gsma:params:xml:ns:rcs:rcs:fthttp">
3 <file-info type="thumbnail">
4 <file-size>9397</file-size>
5 <content-type>image/jpeg</content-type>
6 <data url="http://<attacker’IP>:<Port>/Thumbnail

/b0446a26be40434cb3b70a77364447d6DT.jpeg"
until="2025-02-22T00:09:09.000Z"/>

7 </file-info>
8 <file-info type="file" file-disposition="

attachment">
9 <file-size>79074</file-size>

10 <file-name>IMG_6863.JPG</file-name>
11 <content-type>image/jpg</content-type>
12 <data url="http://<attacker’IP>:<Port>/File/

b0446a26be40434cb3b70a77364447d6DF.JPG"
until="2025-02-22T00:09:09.000Z"/>

13 </file-info>
14 </file>

Listing 1. RCS messages payload example

Detecting client public port. The major challenge
of connection four-tuple inference is the source port the
NAT uses. The maximum possible port range is 216 =
65536. However, in different OS implementations, the port
range is often narrower. For example, the port range in
Linux ranges from 32,768 to 61,000. Furthermore, since
NAT often adopts the port reservation strategy [52], the
search range remains consistent. For port inference, we
assume that the entire port scanning range is defined as
{Port-Guessn | 1 ≤ n ≤ N}. The attacker impersonates
the victim server and sends packets to the NAT IP, with
the destination port set to Port-Guessn, each carrying a
payload of length n. Due to the presence of NAT, only
packets with the correct port will be forwarded to the
victim client and can be sniffed over the wireless channel.
The attacker can then use the length-based reverse lookup
to identify which specific port is open. Figure 5 show
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about this procedure, and Port-Guessc is correct port.
However, in real-world attacks, the length of a single

IP packet is constrained by the MTU (Maximum Trans-
mission Unit) and bandwidth, so the attacker cannot assign
a unique length for each guessing attempt. To overcome
this issue, as shown in Figure 6, the attacker can uniformly
divide different guessing attempts into a number of BINs
and assign a different length payload to each BIN. The
attacker can first infer which BIN the port is in and then
determine which port in the BIN it is.

The time consumed by the attacker’s inference is
closely related to the bandwidth. Assuming the bandwidth
is X (Byte per second), and the probing time for each
round is tround (Second). This time includes the time to
transmit the packets and the time to wait for the sniffer
to respond. Assuming B Bins are divided, and b Bins are
probed per round, we could know the time tN of inferring
entire port searching space N is calculated as:

tN =

⌈
B

b

⌉
· tround + tN/B (1)

In this formula, the preceding ⌈B
b ⌉ represents the time

spent determining which BIN the Port is in, while tN/B
represents the time spent locating which element in the
BIN it is. It can be seen that when b is as large as possible
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and B is as small as possible, the total time will reach its
minimum.

It should be noted that if B is chosen too small, tN/B
may be too long as shown in 2. Since we don’t want to
search the N/B port range in Bins, we try to complete this
phase within one round, which means that each port can
be length-encoded and sent in one round.

tN/B =

N/B∑
i=1

(i+H)/X ∝ (
1

B
) (2)

Moreover, due to the influence of bandwidth and
MTU, B and b have the following limitations. This means
that each round of packet sending needs to be less than the
bandwidth limit as formula 3, and the number of ports in
each group needs to be less than the MTU as formula 4.
Only in this way can a port be bound to a specific length.
These two formulas show that B cannot be too small and
b cannot be too large.

b∑
i=1

(i+H) · N
B

≤ X · tround (3)

N

B
≤ MTU −H (4)

In these formulas, we use the following notations:
The header of the IP datagram is denoted as H. For
TCP, H equals 40 (Byte), and for UDP, H equals 28
(Byte). Additionally, we have standardized the units of
measurement.

Therefore, the attacker could first get the range of
values for B according to formulas 4, then substitute it into
formulas 3 to find the maximum b. For example, under
5Mbps bandwidth, the attacker can adopt the following
scheme: dividing this 215 port range into 64 BINs, each
containing 512 ports. The attacker probes 25 sets per
second (sum(range(40, 64)) * 512 * 8 = 4.8 Mbps).
Therefore, it would only take at most 3s to identify the
BIN they are in and then 1s to determine the exact port,
just like Figure 6.

However, this rapid inference strategy will fail against
NAT that verifies sequence numbers, such as some in LTE
networks. Therefore, we propose a more covert method
of inference that leverages the SYN-ACK message in
the challenge ACK mechanism to determine if the four-
tuple exists. The specific process is illustrated in Fig-
ure 7. The attacker, impersonating a possible four-tuple,
transmits a SYN-ACK packet to the server. A response
from the server in the form of a challenge ACK confirms
the correctness of the four-tuple inference; conversely, if
the response is an RST packet, which differs in length
from the challenge ACK, the attacker would ascertain the
incorrectness of this attempt. By systematically examining
the entire set of candidate tuples, the attacker is ultimately
able to deduce the accurate four-tuple inference.

4.3. Locating sequence window

As described in §3.2, the attacker should first pin-
point a Sequence Number (SEQ Num) that falls within
the receiver’s window. By leveraging the challenge ACK
mechanism, only if RST packet’s SEQ Num falls within
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Figure 8. Locating sequence window. SEQinw is X

the receiver’s window, the receiver will send the ACK
packet to the sender. Therefore, the attacker can divide
the entire space into blocks according to the window size.

So the initial search space for SEQ Num is [0, win,
win*2, ...], where ’win’ is the size of the TCP receiver
window. As shown in Figure 8, the attacker sends TCP
RST packets with SEQ numbers from the initial search
space. If the server receives a TCP RST packet contain-
ing a SEQ number within the window, it will respond
with a challenge ACK packet to the client. The attacker
sniffs for challenge ACKs through the length side channel
and identifies the search space for the next round. The
attacker can find the SEQ number within the window
after log(232/win) rounds of binary search. For the conve-
nience of subsequent explanation, this SEQ Num records
as SEQinw.

4.4. Identifying acknowledge number and exact
sequence number

After obtaining SEQinw, the next step is to locate an
acknowledge Number (ACK Num) that falls within the
challenge ACK window. Finally, the attacker needs to con-
jecture the left-side boundaries of the receiver’s window
and challenge ACK window to determine the exact SEQ
Num (RCV.NXT) and acceptable ACK Num (SND.UNA)
that the server side will acknowledge. It should be noted
that the attacker uses the PSH-ACK packets, that its SEQ
Num falls within the receiver’s window and its ACK
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Num falls within the challenge ack window, to trigger
the challenge ACK packet.

Locating challenge ACK window. According to RFC
1323 [7], the maximum receiver’s window size can be
expanded from 216 to a maximum of 230 = 1G using the
window scaling option. Therefore, the MAX.SND.WND
cannot exceed 1G. Consequently, the challenge ACK win-
dow size is between 1G - 2G, which is a quarter of the
entire ACK space. Therefore, the attacker divides the en-
tire ACK space into four blocks and probes each block to
determine in which block the challenge ACK window lies.
In our implementation, the attacker sequentially probes the
first value of each bucket, namely 0, 1G, 2G, and 3G, until
the attacker detects at least one that triggers a challenge
ACK packet. This process is mentioned in Figure 9 Phase
1, and this ACK Num records as ACKinw.

Identifying acceptable acknowledge number. At-
tacker sets the ACKinw as the right boundary, and the
left boundary is chosen as ACKinw - G. Specifically if
0 triggers a challenge ACK, we then need to probe 3G
to see if it triggers a challenge ACK. If it doesn’t, then
3G is chosen as the left boundary; otherwise, the attacker
probes between 2G and 3G. Next, utilizing the charac-
teristic that a challenge ACK is only triggered within the
challenge ACK Window, the attacker conducts a binary
search within the set boundaries to find the boundary
value SND.UNA - 2G. Specifically, the attacker sends
ACK = left+right

2 every round and determines the next
boundary situation based on whether there is a challenge
ack triggered until the left boundary is equal to the right
boundary, as mentioned in Figure 9. This value + 2G is
the SND.UNA attacker needs to solve for.

Identifying exact sequence number. This process is
very similar to acceptable ACK Num inference, with the
key difference being that this time we fix the ACK Num
and perform a binary search for the Seq Num by PSH-
ACK packets. We select SEQinw as the right boundary and
SEQinw - win as the left boundary. The ACK Number is
set as ACKinw and fixed. Through a similar binary search,
we can determine the left boundary of the receiver’s
window, which corresponds to the next SEQ number the
server accepted (RCV.NXT).

4.5. Practical Attack Consideration

The length-based side channel exhibits limited ro-
bustness, being susceptible to two primary factors: noise

and packet loss. The former refers to the routine com-
munication data of the victim device, where its length
may influence the adversary’s assessment. The latter is
associated with the spoofed server and the radio sniffer.
We provide some effective measures for these two points.

4.5.1. Countermeasures to Noise. To confront the noise
of the side channel, we propose two simple yet effective
strategies that are suitable in different cases. The first
strategy is repeating, the idea of which is to repeat packets
of a single round during the guess phase. In the checking
phase, the side channel will report several packets with the
same length in the case of the correct guess. This strategy
is robust against noise as it is unlikely that noise packets
of the same length will occur simultaneously many times.

The drawback of this strategy is that it does not work
for challenge ACK based TCP hijacking on the state-of-
the-art Linux kernel, as the kernel limits the rate of chal-
lenge ACK to one packet per 500ms. Resend and confirm
is designed to complement this strategy. To make sure a
guess is correct, the attacker resends the payload several
times. This approach works because the probability of
noise packets with the same length occurring continuously
is very low.

4.5.2. Countermeasures to Packet Loss. To reliably
launch the attack, we should consider two sources of
packet loss: (1) packet loss of the spoofed server; and
(2) packet loss of the radio sniffer.

Due to the turbulence of the Internet, packet loss of
spoofed servers is sometimes unavoidable. The loss of the
guessed packet causes the side channel to miss the correct
guess, which will finally fail the attack. A simple way to
deal with this issue is to repeat the packets from different
locations. It is unlikely that all repeated packets will be
lost simultaneously.

On the other hand, packet loss of the radio sniffer
is usually caused by implementation issues. It can be
subverted by optimizing the implementation of the sniffer,
which is beyond the scope of this paper. Therefore, we
choose to apply some tricks against such a kind of packet
loss in our evaluation. For TCP hijacking, we send spoofed
packets with both left and right sections of binary search
to detect the packet loss. If both left and right sections
trigger no challenge ACK, it can be inferred that a packet
loss has happened to the sniffer. In such a case, we will
retry the current round. For Wi-Fi scenarios, we further
decrease the packet loss rate by increasing the number of
network interface cards.

5. Evaluation

In this section, we conduct an evaluation. Initially,
we delineate the experimental setup, encompassing the
devices and network utilized (§5.1). Subsequently, a local
experiment is carried out to assess the practicability of
the attack, with particular emphasis on the influence of
bandwidth and the type of network equipment on the
attack (§5.2). Finally, the attack is deployed in real-
world scenarios: executing the fake short message injec-
tion (TCP) within a commercial LTE environment, and
performing the DNS cache poisoning attack (UDP) over
public coffee shop Wi-Fi. The discussion further extends
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Figure 10. Devices for evaluation

to the implications of noise and packet loss on the efficacy
of the attacks (§5.3).

5.1. Experiments Setup

This section will present the device and network uti-
lized in our experiment. Figure 10 shows several devices
employed during our evaluation. We chose a Xiaomi
10 as the victim client. To closely simulate real-world
conditions, we installed 132 applications on the victim
device, including the top 30 free applications from Google
Play. We procured a remote server on Vultr, operating
on Ubuntu 22.04, to fulfill the role of the victim server.
This server, configured with OpenSSH 8.2 and OpenSSL
1.1.1, served as a remote SSH service node to deliver TCP
services for our local experiments. It was also configured
with BIND 9.18.28, which set the response rate limit as
1 per second to function as a DNS service node, facili-
tating DNS services for local and real-world experimental
settings.

We need the radio sniffer and the spoof server to
serve as the attacker. For the former, we used the srsLTE
framework [23] along with a USRP X310 to monitor LTE
environments, and used three Wi-Fi adapters for the Wi-Fi
scenario. For the latter, we rent several servers equipped
with spoofing abilities to send spoofed packets in real-
world environments.

For the network used in the experiment, we selected
multiple routers for the local experiment and selected a
commercial LTE network and a coffee shop Wi-Fi network
for the real experiment. We carefully consider the ethical
issues when deploying the attack in real-world scenarios
and discuss them in §6.2.

5.2. Local Experiments

In this section, we conduct our experiments within
the local network. Specifically, we evaluate the following
three aspects: (1) The time required for the attack; (2)
How bandwidth impacts the efficiency of the attack; (3)
How router models impact on our attacks.

5.2.1. Time cost. We evaluate using the devices described
in §5.1. For TCP connections, the victim establishes an
SSH connection with the remote server, and the attacker
needs to infer the exposed port, the sequence, and the
acknowledge numbers of this SSH connection followed
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Figure 11. Time cost of TCP parameters inference

by three steps as mentioned in §4. For UDP connections,
the victim sends a DNS query to the remote server and the
attacker needs to infer the exposed port before this query
times out. For each scenario, we conducted fifty rounds
for both TCP and UDP experiments and the bandwidth of
the attacker was under 5Mbps.

The initial step involves port inference, wherein the
multi-bin search methodology delineated in §4.2 is em-
ployed. Regarding TCP connections, the port space can be
partitioned into 147 bins, with 49 bins searched per round.
It requires at most three iterations to determine the bin
containing the target port, followed by a single iteration
to identify the specific port. For UDP connections, the port
space can be divided into 62 bins, allowing for 31 bins
in each iteration. Identifying the precise port requires no
more than three iterations. To mitigate the risk of packet
loss resulting from channel congestion, the timeout for
each round is regulated to 2 seconds.

For Step 2 and Step 3, we use the scheme mentioned
in §4.3 and §4.4 to identify the acceptable acknowledge
number and the exact sequence number. We calculated the
average bandwidth of 50 experiments and found that only
0.329Mbps is needed.

Cumulative distribution function (CDF) graphs were
plotted for both TCP and UDP experiments, as mentioned
in Figure 11 and Figure 12. Analysis of these graphs
indicates that the mean parameter inference time cost
is 40.58 seconds for TCP and 3.55 seconds for UDP.
It’s important to highlight that the timeout of a TCP
long-lived connection is much longer than these 40.58
seconds, as mentioned in previous work [34]. Regarding
UDP, particularly DNS, our observations revealed that a
DNS query generally undergoes four to five retries, all
originating from the same port. In our experiments, the
attacker could execute the inference within the constraints
of a query timeout using a bandwidth of 5Mbps.

Summary. Our attack can be executed within a real-
istic time cost. Under the 5Mbps bandwidth, TCP param-
eters inference was completed 40.58 seconds on average,
while UDP parameters inference was achieved in 3.55
seconds on average.

5.2.2. Bandwidth impact on time cost. According to
§4.2, the multi-bin methods depend on the bandwidth.
Increasing bandwidth greatly reduces inference time. So
we analyze various bandwidth levels—0.5Mbps, 1 Mbps,
2 Mbps, 3 Mbps, 5 Mbps, and 8 Mbps—to assess the time
cost of port inference. For each bandwidth, we conducted
ten tests and calculated the mean.
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We plotted the experimental results in Figure 13.
It is worth noting that for bandwidths of 0.5Mbps and
1Mbps, the attacker can only barely infer the port number
(because the NAT mapping table for this item has not been
deleted) and has almost no time to complete the injection
of the DNS message. However, when the bandwidth is
greater than 2Mbps, the attacker can infer and complete
the message injection in time. And with the increase in
bandwidth, port inference can be completed within a few
seconds.

The experimental results are illustrated in Figure 13.
It is noteworthy that at bandwidths of 0.5Mbps and
1Mbps in UDP scenario, the adversary is only marginally
known of the port number, as the NAT mapping table
for this particular item remains. Consequently, the adver-
sary has insufficient time to finalize the injection of the
DNS message. In contrast, when the bandwidth exceeds
2Mbps, the adversary can infer and execute the message
injection on time. Moreover, with increasing bandwidth,
port inference can be accomplished within a matter of
seconds. Compared to previous works [14], [18] that rely
on the challenge ACK mechanism of SYN packets for
port inference, our attack method utilizes bandwidth more
efficiently and accomplishes port inference by less time.

Summary. Our findings show that enhancements in
bandwidth yield a considerable reduction in time expen-
diture, indicating our attack has better performance in
modern networks with large bandwidth, e.g., 100Mbps.

5.2.3. Wi-Fi Router Evaluation. To encompass a com-
prehensive spectrum of router models, we conducted tests
on an assortment of vendors using the default factory
settings within a controlled local environment. The ven-
dors assessed include Xiaomi, TP-Link, Huawei, Mercury,
Asus, Tenda, Ruijie, H3C, 360, and ZTE. The data ob-
tained from these evaluations is systematically presented

Figure 14. Demonstration of fake short message injection. The field
with red border is faked sender “123456”, the field with blue border
is faked SMS content “This is a fake short message”. The whole attack
is accomplished over an LTE network.

in Table 4. Our primary concern lies in whether these
routers have enabled reverse path validation and TCP
window tracking. The activation of the former necessitates
that an attacker introduce an external spoofed server,
whereas the latter requires the employment of SYN-ACK
to deduce the TCP connection port. Notably, among the
22 routers examined across 10 distinct vendors, merely
5 devices had reverse path lookup enabled, and none
provided support for window checking. We used a similar
approach to conduct TCP and UDP parameters inference
on these routers and found that they are all vulnerable.
This phenomenon is easy to explain because the core
reason for our attack is due to the selection of the stream
cipher, rather than the specific router model.

Summary. Our findings indicate that our attack is
independent of Wi-Fi routers. The principal issue lies in
the wireless network’s decision to employ stream cipher
encryption, rather than in any other design factors.

5.3. Real-World Experiments

In our testing of real-world scenarios, we investigated
two cases: LTE and Wi-Fi. For the LTE scenario, a
commercial LTE network was selected, within which we
attempted to transmit a fake RCS message, an application-
layer protocol operating over TCP, to the mobile device.
With regard to the Wi-Fi scenario, our focus was on
typical environments, including a coffee shop, a hotel, and
a campus network. In these contexts, we endeavored to
inject a DNS response into the device. Considering ethics,
the victim device was restricted to our personal devices,
and prior notifications were provided to the network man-
agers of the coffee shop, hotel, and campus.

5.3.1. Fake Short Message Injection. In this scenario,
we aimed to hijack the connection of Rich Communication
Services (RCS) to inject a spoofed short message into the
victim client. With this technique, the attacker can send
a fake message that looks like one sent by the authority
and requires the victim to install a malicious application.
If the victim user trusts the spoofed message and installs
the application, the attacker could possibly compromise
the phone and steal secrets. We implemented this scenario
over a commercial LTE network. In the scenario, both
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TABLE 4. TESTED WIRELESS ROUTERS LIST

Router Model Vendor Generation WPA Wi-Fi Channel Reverse Path
Validation Disabled

TCP Window
Tracking Disabled Vulnerable

Redmi RA81 Xiaomi Wi-Fi 6 WPA2/WPA3 6, 40 ✓ ✓ ✓

Redmi RM2100 Xiaomi Wi-Fi 5 WPA2 3, 161 ✓ ✓ ✓

Mi 4C Xiaomi Wi-Fi 4 WPA2 6 ✓ ✓ ✓

TL-XDR6020 TP-Link Wi-Fi 6 WPA2/WPA3 153 ✓ ✓ ✓

TL-WAR1200L TP-Link Wi-Fi 5 WPA2 52 ✓ ✓ ✓

TL-WDR7620 TP-Link Wi-Fi 5 WPA2 44 ✗ ✓ ✓

TL-WR886N TP-Link Wi-Fi 4 WPA2 11 ✗ ✓ ✓

AX3 Pro Huawei Wi-Fi 6 WPA2/WPA3 149 ✓ ✓ ✓

TC7001 Huawei Wi-Fi 6 WPA2/WPA3 149 ✓ ✓ ✓

TC7102 Huawei Wi-Fi 5 WPA2 44 ✓ ✓ ✓

WS5200 Huawei Wi-Fi 5 WPA2 40 ✓ ✓ ✓

D196G Mercury Wi-Fi 5 WPA2 11, 153 ✓ ✓ ✓

MW300R Mercury Wi-Fi 4 WPA2 11 ✗ ✓ ✓

RT-AX57 Asus Wi-Fi 6 WPA2/WPA3 161 ✗ ✓ ✓

W30E Tenda Wi-Fi 6 WPA2/WPA3 44, 161 ✓ ✓ ✓

EM12 Tenda Wi-Fi 6 WPA2/WPA3 149 ✓ ✓ ✓

X32pro Ruijie Wi-Fi 6 WPA2 44, 153 ✓ ✓ ✓

R100 H3C Wi-Fi 5 WPA2 40 ✓ ✓ ✓

R300G H3C Wi-Fi 5 WPA2 44 ✓ ✓ ✓

T7 360 Wi-Fi 6 WPA2/WPA3 40 ✓ ✓ ✓

C301 360 Wi-Fi 5 WPA2 149 ✓ ✓ ✓

E2631 ZTE Wi-Fi 6 WPA2/WPA3 153 ✗ ✓ ✓

the RCS server and the spoofing server are located on
the Internet. We used iptables to redirect all traffic to our
server for ethical considerations. We craft an SIP message
that encapsulates a fake short message. Targeted to the
keep-alive TCP connection of RCS, we infer the source
port, SEQ number, and ACK number by the attack we
propose. With inferred information, we send the crafted
SIP message into the hijacked connection. As shown in
Figure 14, the device accepts the packet and notifies the
victim user that a short message has been received in the
default SMS application.

We repeated the experiments ten times, successfully
executing nine within 5 minutes at a bandwidth of 0.2
Mbps using the covert strategy mentioned in §4.2. The
time CDF distribution is shown in Figure 15. It is worth
mentioning that background noise in our experiments can
arise from two sources: (1) traffic from other clients
connected to the same network and (2) traffic generated
by other apps on the victim’s device. For the former, the
attacker can isolate and filter the victim’s traffic in multi-
client environments because each device on the network
is assigned a unique Radio ID. For the latter, during
our experiments, the victim device, with popular apps
installed and logged in, was kept in a screen-off state.
We performed continuous packet capture on the client and
observed that the channel was mostly silent.

Based on our experimental log, we uncovered factors
that affect the time cost of the attack. The time con-
sumption of an attack increases with the noise rate, as
the noise triggers our strategy to perform extra inference
rounds. We also analyze the reason for the failed attempt.
By inspecting the log, we discover that the reason is
packet loss of the radio sniffer (maybe caused by excessive
background traffic, which causes the real message to be
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Figure 15. CDF of time cost for fake short message injection over LTE
network

overwhelmed). The strategy against noise works perfectly
during the evaluation, but the countermeasure against
packet loss sometimes does not work well. Fortunately,
we can suppress the packet loss by implementation opti-
mization, like improving LTE radio sniffer capabilities.

The real-world deployment of RCS messages often
lack integrity or confidentiality protection, rendering them
vulnerable to manipulation. In our study, we measured
three major mobile operators, each with hundreds of
millions of subscribers. We also tested six popular 5G
messaging-enabled mobile phones. Our findings show that
all RCS traffic from these devices, when connected to the
aforementioned operators via cellular networks, is trans-
mitted in plain text. These devices directly establish SIP
channels with the operators’ servers without mechanisms
for ensuring integrity or confidentiality. The design rely
on encrypted wireless networks for protection, which can
prevent traditional man-in-the-middle (MITM) attacks, but
it still leaves room for potential off-path hijacking attacks.
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Summary. The attacker can leverage the length side
channel to infer the TCP connection four-tuple, sequence
number, and acknowledge number, thereby enabling the
injection of fake messages into commercial mobile net-
works within 5 minutes.

5.3.2. DNS Poisoning Attack. In this attack scenario, we
aimed to conduct a DNS poisoning attack to demonstrate
UDP connection hijacking. Accordingly, we conducted
our tests in three typical Wi-Fi networks: a coffee shop,
a hotel, and a campus network.

To launch the attack, we first trigger the victim device
to send a DNS query by a zero-click method described
in [51]: The attacker sends an RCS message with a crafted
media preview link to the victim device like Listing 1
which change code IP to what attacker want to DNS
poisoning. Once the victim device accepts that message, a
DNS query will be automatically sent out. After the victim
device sends out the DNS query, we extend the attack
window through the method (by RRL) described in [31]
and perform connection inference. We inject a fake DNS
response to the victim with all possible transaction IDs.
The injected response with the correct transaction ID is
accepted and cached by the client.

We conducted ten trials at each location. In the case
of the campus network and the coffee shop, we achieved
success in seven and five trials respectively, due to packet
loss caused by the radio sniffer. This phenomenon can be
ascribed to the packets sent by the attacker being obscured
within the background traffic generated by the substantial
number of users connected to the Wi-Fi network. Impor-
tantly, throughout the attack, the mobile phone remained
silent, while in the screen-off state, thus not interfering
with the execution of the attack. At the hotel, all trials
were conducted successfully.

Summary. The attacker can leverage the length side
channel to infer the source port of the DNS query, thus en-
abling the injection of DNS responses with all transaction
id to the victim device before the query timeout.

6. Mitigation and Discussion

6.1. Mitigation

Mitigation in wireless protocol. One key element of
the attack is the leakage of the IP packet. Therefore, hiding
the packet length is one of the approaches to mitigate
the vulnerability. A straightforward idea to implement this
approach is to apply random padding to stream cipher
or use block cipher. However, padding is fundamentally
equivalent to adding noise to the side channel. The idea
won’t prevent the attack if the attackers apply the “wait
for idle” strategy we have proposed.

Alternatively, We propose a new approach termed
onetime pad radio ID, which stops attackers from filtering
out the radio frame of the victim. Specifically, a one-
time pad radio ID is maintained between UE and the
access point. The one-time pad radio ID rolls ahead for
each user plane communication. With this mitigation,
attackers cannot track the communication of the specific
user. Consequently, all the traffic for this access point
is potentially to be the noise of the side channel, in

which case launching LenOracle Attack will be almost
impossible.

During the attack, the NAT acts as a filter for attackers
by discarding incorrect packets. Ideally, the NAT should
verify TCP sequence and acknowledge numbers, allowing
only completely correct packets to pass through. Although
this would increase the NAT’s workload, considering the
advancements in computing capabilities, such additional
load should not be a significant concern.

Mitigation in network deployment. A server that
is capable of sending spoofed IP packets is one of the
requirements of the attack. For this, blocking spoofed IP
packets from being sent or received is another aspect of
mitigation. Blocking spoofed IP packets from being sent
out has been popularized and applied to ASes for several
years. However, as described in [30], about a quarter of
ASes still did not block packets with spoofed source IP
addresses by 2019. What’s worse, the attack is still alive
even in the case where only one AS can send spoofed IP
packets.

On the other hand, the operator can deploy policies
to prevent spoofed IP packets from being received by the
victim. For example, A operator can deploy a policy that
prevent all packets with a source address that belongs to
an AS from entering to that AS.

Mitigation in application layer. Encryption at the
application layer is yet another effective measure to pre-
vent data injection attacks. For example, the RCS service
provides an option of encrypting SIP payloads using TLS.
As for DNS, there are projects like DNSSEC [37] and
DNSoverTLS [25]. Attackers cannot achieve the RCS
injecting attack and the DNS poisoning attack if these
options are enabled. However, this mitigation won’t al-
leviate the Transport layer attacks such as connection
presence inference. On the other hand, this mitigation is
not always practical in real world scenarios. There are
plenty of plaintext applications and protocols in cellular
networks, primarily due to the cost of encryption.

6.2. Discussion

Ethical consideration. We referenced existing papers
[33], [54] on security testing of cellular networks, as well
as authoritative guidance such as the Menlo Report [6],
to design an ethically compliant experiment. We avoided
interfering in the commercial network during our imple-
mentation and evaluation. For RCS hijacking, we use
lower bandwidth of 0.2 Mbps. For DNS hijacking, we
use a self-deployed DNS server as the target to avoid
hindering public DNS servers.

Responsible disclosure. We follow the responsible
disclosure policy and have reported our findings to GSMA
and Wi-Fi Alliance. GSMA appreciated our submission
and confirmed the issue does affect 5G/4G/3G. GSMA
notified all its members (operators and vendors world-
wide) of the issue and highlighted our recommendations
on IP spoofing protection and application layer encryption
in the notification. We have yet to receive a response from
Wi-Fi Alliance.

LenOracle attack for block cipher. Unlike stream
cipher, block cipher applies padding to the plaintext before
the encryption. As a result, we can only obtain a padded
length of plaintext for a given ciphertext. The consequence
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of the inaccurate length is the increased noise of the side
channel, as attackers cannot distinguish packets with the
same padded length. To overcome this, attackers has to
apply strategies that subvert the consequence caused by
the noise. In addition, since attackers has to send packets
only with MTU/block size different sizes per round, the
efficiency of NAT-based connection inference will signif-
icantly decrease.

In summary, the padding operations in block cipher
increase the time consumption of a successful exploit and
affect the attack that requires a short exploit time (e.g.,
DNS hijacking). We regard the evaluation of LenOracle
Attack in such a situation as our focus of work in the
future.

7. Related Work

Wireless network security. The field of wireless
network security has been a popular research topic. The
research is mainly divided into two levels.

On the one hand, attackers are focusing on passive
attacks to violate user privacy. As indicated in references
[5], [28], deep learning methods are used to analyze the
type of video represented in encrypted traffic, allowing
attackers to determine the content being watched by the
victim. Moreover, attackers have been able to pinpoint
the victim’s location by sniffing wireless frame traffic, as
noted in [26].

On the other hand, active attacks are often charac-
terized by the utilization of counterfeit base stations, or
malicious relays, or by the overshadowing of signals to
take advantage of the inherent vulnerabilities in the broad-
cast nature of communications. For example, as referenced
in [42]–[46], attackers have exploited design flaws in
protocols and the malicious use of relays to break the
encryption of WPA, WPA2, and WPA3. Relating to LTE
networks, active attacks have been executed using fake
base stations [38] and signal overshadowing [50].

In contrast, our attack performs packet injection by
exploiting the inherent features existing in IP-based wire-
less networks, which are more prevalent. In addition, our
attack only relies on a passive radio sniffer, without fake
base stations or signal inferences.

Off-path TCP hijacking attacks. For the past decade,
significant efforts have been devoted to uncovering secu-
rity vulnerabilities in TCP connections. Researchers have
proposed various approaches to infer the TCP SEQ and
ACK numbers thus hijacking connections to inject crafted
malicious content. However, previous works on off-path
TCP sequence number inference rely heavily on exploiting
the side channel of the operating system [9], [18], [20],
[22], or executing an unprivileged malicious script on the
client side [14], [35], [36].

As for the roadmaps of these attacks, they all fall
under the same scheme of “guess-then-check”. These side-
channel attacks utilize some critical information observ-
able by the off-path attackers or the malicious script
hosted on the client side. The most common exploits of
side channels include the rate limit of global challenge
ACK [9], the system shared packet counter [35], [36] and
IPID counter [18], [20], [22]. In general, these vulnera-
bilities are mainly caused by incorrect implementations of
specific operating systems and can be fixed by software

updates. In recent work [14], by exploiting the timing
side channel introduced by the half-duplex nature of IEEE
802.11, an attacker can inject malicious data into an HTTP
session. Due to the protocol design, timing side channel
attacks are extremely hard to mitigate, but it requires the
cooperation of a client-side sandboxed malicious script.
Prior studies have shown that even off-path adversaries
can mount powerful attacks by exploiting vulnerabilities
at the application layer [11]–[13], [29], [32], [48], [53],
while our work operates independently of application
logic and targets fundamental transport-layer behavior —
making it more widely applicable.

Our attack exploits inherent features of wireless net-
works and cryptosystems, it is hard by nature to mitigate
through software updates. Moreover, our attack only re-
quires an additional sniffer device, which is a more lenient
prerequisite compared to unprivileged malware or sand-
boxed script execution clients. Additionally, compared to
previous works, our attack can more rapidly complete
the guessing of four-tuples. Lastly, our attack affects the
security of not only TCP connections but also UDP.

8. Conclusion

In this paper, we presented LenOracle Attack, which
leverages the length of IP packets as a side channel to
hijack TCP/IP communication across wireless networks
(e.g., 5G/4G/3G and Wi-Fi). We conducted a compre-
hensive evaluation of this attack using various metrics
and implemented a TCP hijacking attack on the LTE
network and a UDP hijacking attack on the Wi-Fi network.
The hijacking attack consequently caused a faked short
message to be injected to the victim under LTE, and
DNS hijacking for the victim using Wi-Fi. Our research
demonstrated that this novel hijacking technique poses
a threat to a wide array of IP-based wireless networks,
including 5G, 4G, 3G, and Wi-Fi. Lastly, we proposed
potential defense mechanisms against this attack.

Data Availability

The implementation of LenOracle is open source at
https://github.com/zmh02/LenOracle.
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