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Abstract
ZIP is one of the most popular archive formats. It is used

not only as archive files, but also as the container for other file
formats, including office documents, Android applications,
Java archives, and many more. Despite its ubiquity, the ZIP
file format specification is imprecisely specified, posing the
risk of semantic gaps between implementations that can be
exploited by attackers. While prior research has reported in-
dividual such vulnerabilities, there is a lack of systematic
studies for ZIP parsing ambiguities.

In this paper, we developed a differential fuzzer ZIPDIFF
and systematically identified parsing inconsistencies between
50 ZIP parsers across 19 programming languages. The evalua-
tion results show that almost all pairs of parsers are vulnerable
to certain parsing ambiguities. We summarize our findings as
14 distinct parsing ambiguity types in three categories with
detailed analysis, systematizing current knowledge and uncov-
ering 10 types of new parsing ambiguities. We demonstrate
five real-world scenarios where these parsing ambiguities
can be exploited, including bypassing secure email gateways,
spoofing office document content, impersonating VS Code
extensions, and tampering with signed nested JAR files while
still passing Spring Boot’s signature verification. We further
propose seven mitigation strategies to address these ambi-
guities. We responsibly reported the vulnerabilities to the
affected vendors and received positive feedback, including
bounty rewards from Gmail, Coremail, and Zoho, and three
CVEs from Go, LibreOffice, and Spring Boot.

1 Introduction

The ZIP file format is one of the most popular archive formats.
Most users recognize ZIP by its .zip file extension, but they
are also using it implicitly, when they are reading and writing
office documents, installing Android applications and browser
extensions, or running Java applications, because all these file
formats use ZIP as the underlying container.
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As ZIP has become a fundamental building block in many
applications, security researchers have been investigating the
file format to find potential vulnerabilities. Path traversal in
ZIP filenames, a.k.a. ZIP Slip [38], results in arbitrary file
writing that may escalate to remote code execution, while
ZIP bomb can be used to conduct DoS attacks by exhausting
computing resources with highly compressed ZIP archives.
Many ZIP libraries are deploying fuzz testing to uncover
memory bugs, including libzip, minizip, zip-rs, zip4j, zt-zip,
and Commons Compress in OSS-Fuzz [6].

The work mentioned above all focused on individual ZIP
parsers, while increasing attention from researchers is being
directed toward semantic gaps—subtle inconsistencies be-
tween various ZIP implementations that can be exploited by
attackers. A high-profile example is the infamous Android
master key vulnerability [20], which bypassed Android’s se-
curity by exploiting a mismatch between the ZIP component
that verifies signatures for privileged applications and the
component that decompresses the file contents. This discrep-
ancy allowed malicious code to be inserted into privileged
applications without breaking their signatures. While individ-
ual vulnerabilities have been discovered [16, 20, 23], these
studies still rely on manual and ad hoc methods for discovery.
To date, no systematic study has yet been conducted for ZIP
parsing ambiguities.

In this paper, we developed a differential fuzzing tool
ZIPDIFF. It generates and mutates ZIP files with grammar-
based rules and uses feedback from ZIP parsers to guide
the mutation. We collected 50 ZIP parsers across 19 pro-
gramming languages and used ZIPDIFF to identify parsing
inconsistencies between them. The results can be divided into
two parts. First, we showed that parsing inconsistencies are
quite prevalent among ZIP parsers nowadays, as almost any
pair of parsers is inconsistent in parsing ZIP files. Second,
we investigated the ZIP files that caused the discrepancies
and classified these parsing ambiguities as 14 distinct types
in three categories: redundant metadata, file path processing,
and ZIP structure positioning. Many of these parsing ambigu-
ities were previously unknown, and we also uncovered new
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variants of known ambiguities and new techniques to bypass
detection of ambiguous ZIP files.

We demonstrate the practical impact of those parsing ambi-
guities through five real-world exploitation scenarios: secure
email gateway bypass, office document content spoofing and
signature forgery, nested JAR signature forgery, and VS Code
extension impersonation. These vulnerabilities affect a wide
range of critical applications, including Gmail, Golang, Spring
Boot, and LibreOffice. We propose seven mitigation strategies
to defend against those identified issues. We have reported our
findings to the affected vendors and coordinated in addressing
these issues. We received positive feedback including bounty
rewards from Gmail, Coremail, and Zoho, and three CVEs
from Go, LibreOffice, and Spring Boot.

In summary, we make the following contributions:

• We designed and implemented our differential fuzzing
tool ZIPDIFF1 to systematically identify inconsistencies
between ZIP parsers (Section 4).

• We demonstrated the prevalence of discrepancies among
ZIP parsers through the evaluation of ZIPDIFF on 50
parsers across 19 programming languages. We discov-
ered 14 distinct types of ZIP parsing ambiguities, of
which 10 types are newly discovered (Section 5.2).

• We proved the broad real-world impact of these discrep-
ancies by observing five attack scenarios where inconsis-
tencies between ZIP parsers can be exploited (Section 6).
We have responsibly reported the identfied vulnerabili-
ties to the affected vendors (Section 7.1).

• We proposed countermeasures to mitigate these attacks
in various situations (Section 7.2).

2 Background

2.1 The ZIP File Format
The ZIP file format, originally created by PKWARE in 1989,
is a widely used archive format specified in a document called
APPNOTE.txt [29]. Known for its popularity as an archive
format with the .zip file extension, ZIP also serves as a con-
tainer for various other file types. These include office docu-
ment formats OOXML and ODF, Java Archive (JAR), PHP
Archive (PHAR), Visual Studio Extension (VSIX), Android
Package (APK), Cross-Platform Install (XPI) used by Mozilla
Firefox, Chrome Extension (CRX), and many more [15].

A regular ZIP file includes three major parts, the local file
entries, the central directory, and the end of central directory
record, as illustrated in Fig. 1. Each of the local file entries
contains a Local File Header (LFH) and the compressed file
data, optionally with an encryption header and a data descrip-
tor. The central directory consists of the Central Directory
Headers (CDHs), each pointing to an LFH. The CDHs and

1https://github.com/ouuan/ZipDiff

Figure 1: Structure of the ZIP file format

the LFHs provide the metadata for the file entries, such as file-
name, compression method, compressed and uncompressed
sizes, CRC32 checksum, modification time, and several other
flags. Many of these fields are redundant as they are stored
twice in both the CDH and the LFH. The central directory
reduces file I/O operations by keeping information spatially
compact, while redundant metadata in the LFH can facil-
itate data recovery. The End Of Central Directory Record
(EOCDR) provides information to locate the central directory
and an optional file comment field.

The common way of reading a ZIP file involves a series of
steps. The first step is to search for the EOCDR by its 4-byte
signature (50 4b 05 06), because the EOCDR is placed at
the end of the file with a variable size. The EOCDR provides
the position and size of the central directory and the number
of CDHs. Then one can iterate through the CDHs and locate
the corresponding LFHs at the positions specified in each
CDH. The metadata for each file is then available and the data
that follows the LFH can be decompressed.

ZIP files can be stored on a variety of storage medias, or
transmitted in a data stream without being stored. Seeking
the file and thus reading backward starting from the end of
the file is not always feasible, so there is also an alternative
“streaming” way of reading a ZIP file right from the beginning,
using only the information in the LFHs to parse the ZIP
file, either ignoring the central directory and the EOCDR or
optionally checking their consistency with the LFHs later.

Since its first release in 1989, the ZIP file format has
evolved a lot with many feature extensions. One of the most
remarkable extensions is ZIP64 which utilize 64-bit integers
to support file sizes larger than 4GiB. It consists of the ZIP64
extended information extra field for representing large file
sizes, and the ZIP64 End Of Central Directory Record (ZIP64
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EOCDR) with a ZIP64 End Of Central Directory Locator
(ZIP64 EOCDL) to support a large central directory with
more than 65535 entries. Besides the official extensions, there
is also room for customized extensions through the extra fields
in the CDH and LFH.

2.2 Inconsistent ZIP Parsing Behaviors
Although the ZIP file format was defined by PKWARE over
thirty years ago, the specification document was casually writ-
ten, leaving many important details unspecified and open
to different interpretations. In 2015, ISO/IEC 21320-1 [4]
was published to provide a formal standard for the ZIP file
format. However, the standard only imposes several restric-
tions against the use of certain features, such as limiting the
choices of compression methods, restricting the charset of file-
names, and prohibiting the use of encryption, digital signature,
patched data, and multi-volume spanning, without providing
clarification for the previously unspecified details.

The ZIP file format is widely used for various purposes, and
has been implemented in numerous applications and software
libraries across a wide range of programming languages, each
may have its own interpretation of the ZIP specification. Not
only that the official specification is not clear enough, but the
huge number of independent implementations also renders it
impractical to name a de facto standard for ZIP. When it is
hard to argue which one of two conflicting implementations
is the correct one, an alternative solution is to reject inputs
that lead to inconsistent outputs. However, programmers tend
to follow the Postel’s Law, “be conservative in what you do,
be liberal in what you accept from others” [30], so parsers
usually try their best to resolve malformed files instead of
reporting errors. Consequently, it is common to see behavior
discrepancies between ZIP parsers.

The first documented instance of ZIP parsing ambiguity
vulnerability in the CVE list is CVE-2003-1154, where the
attacker was able to bypass virus detection via malformed ZIP
email attachments [3]. Over the past twenty years, prior work
mainly focused on discovering new instances of virus detec-
tion bypassing. This kind of vulnerability occurs when the
antivirus engine and the unarchive application used by the vic-
tim user parse the ZIP file differently. The contents of the ZIP
file may appear innocent when parsed by the antivirus engine
but malicious when extracted by the unarchive application.
A few vulnerabilities involve other scenarios, such as APK
signature verification [20] and Firefox add-on review [16].

3 Overview

3.1 Threat Model
In this paper, we consider an attacker who can craft a mali-
cious ZIP file and deliver it to the victim. The attacker is not
restricted to conventional archiving tools. They can arbitrarily

manipulate the file at the byte level, even in ways that violate
the ZIP specification. The malicious ZIP file will then be pro-
cessed by different parsers with varying interpretations of the
file contents, and these divergences can be exploited by the
attacker to bypass security measures. We identified various
real-world exploitation scenarios, including secure email gate-
way bypass, signature forgery, and content spoofing, which
will be detailed in Section 6.

3.2 Motivating Example

Figure 2: A motivating example to bypass secure email gate-
way via a ambigious ZIP file

In Fig. 2 we present a real-world example of bypassing
secure email gateway using a malformed ZIP file. The ZIP
file contains a malware payload as a file stored in the archive.
The attacker manipulates the file size fields in the CDH corre-
sponding to the malware, where the size of the file entry is set
to one byte, so that some antivirus scanners that obtain the file
size from the CDH would fail to identify the malware, includ-
ing the ones used by mail.ru and inbox.lv. However, the size
fields in the LFH are left untouched. Many ZIP unarchivers,
including popular ones like WinRAR, 7-Zip, and Info-ZIP,
use the file size fields in the LFH and thus are able to extract
the malware. The victim user may trust the antivirus scan-
ning report and execute the extracted malware, and then the
victim’s system will be infected by the malware.

This attack only manipulates the fields in the ZIP file and
is independent of the specific content of the malware pay-
load. No obfuscation, encryption, or transformation of the
malware is required. So this attack is broadly applicable to
any malicious file payload.

3.3 Research Questions
This paper answers the following research questions:

RQ1: How do we systematically identify inconsistencies
between ZIP parsers? Prior work [16, 20, 23] has identified
individual cases of ZIP parsing ambiguities. However, they
rely on manual and ad hoc approaches for discovery. In this
paper, we designed a mutation-based differential fuzzing tool
ZIPDIFF that analyzes the discrepancies between the outputs
of multiple ZIP parsers to identify parsing inconsistencies and



to guide the fuzzing process. We combined grammar-aware
mutations and byte-level mutations to generate the test sam-
ples. The ZIP file format has a complex structure and the field
values often depend on each other. We carefully designed the
mutation strategies to satisfy these requirements so that valid
ZIP files are generated with a high probability. According
to the test results, we classified the parsing ambiguities into
three categories consisting of 14 distinct types along with
root-cause analysis.

RQ2: What is the current prevalence of inconsistencies
among real-world ZIP parsers? The ZIP file is not only one
of the most popular archive formats, but also serves as the
container for many other file formats. It has a long history and
is now used virtually everywhere. As a result, there are many
ZIP applications and libraries across different programming
languages. In our study, we collected 50 different applications
and libraries across 19 programming languages to discover
ZIP parsing ambiguities comprehensively and measure the
prevalence of inconsistencies among real-world ZIP parsers.
The evaluation results show that almost all pairs of parsers
are vulnerable to some parsing ambiguities.

RQ3: How can these inconsistencies be exploited in
real-world products? We examined five scenarios where
a ZIP file is processed by multiple entities, revealing how
parsing inconsistencies between them can be exploited. In
each scenario, we identified vulnerabilities in widely used
real-world products and responsibly disclosed these issues
to the vendors. Additionally, we proposed seven strategies to
mitigate these vulnerabilities from various perspectives.

4 Design and Implementation

4.1 Workflow
To efficiently find discrepancies between ZIP parsers, we de-
signed and implemented ZIPDIFF, our mutation-based black-
box differential fuzzer for ZIP files. ZIPDIFF randomly gen-
erates and mutates ZIP files, and then feeds them to multiple
ZIP parsers. The parsing outputs are used as criteria for select-
ing seeds for further mutations, feedback for the UCB-based
mutation selection, and the indication of inconsistent parsing
behaviors. The overall workflow is illustrated in Fig. 3.

4.2 Sample Generator & Mutator
To begin the fuzzing process, ZIPDIFF first generates some
ZIP file samples as the initial corpus. The sample generator
randomly selects the filenames and contents stored in the ZIP
archive and ZIP parameters such as compression methods
and ZIP feature set to build well-formed ZIP files. In fuzzing
iterations, ZIPDIFF randomly mutates the test samples. There
are two types of mutation strategies:

ZIP-Level Mutations. Some test samples are stored as struc-
tured ZIP files instead of raw bytes. The mutator is then able

Figure 3: Workflow of ZIPDIFF

to locate and randomly mutate individual fields or a combina-
tion of multiple fields. We designed 46 mutation strategies of
this type, covering every field of a legitimate ZIP file. These
mutations are specially designed according to the semantic
characteristics of different fields. For example, the compres-
sion method is either selected within a set of valid options
with a high probability or randomly generated with a low
probability. Some mutation strategies repair the inter-field de-
pendencies such as the sizes and offsets so that more parsers
are able to parse the mutated test samples successfully.

Byte-Level Mutations. To cover more edge cases, ZIPDIFF
also employs byte-level mutations, including byte insertion,
deletion, modification, duplication, splicing, and bit flipping.
After byte-level mutations, the test sample will be stored as
raw bytes without ZIP structures and ZIP-level mutations can-
not be applied afterwards. Note that some ZIP-level mutations
act like byte-level mutations but target individual ZIP fields,
such as flipping the flag bits in LFH and CDH.

The mutator may apply multiple mutations in a single iter-
ation to trigger ambiguities with a combination of mutations.
Otherwise, the first mutation may be discarded if it does not
trigger ambiguities on its own, as mutated samples are added
back to the corpus only when they are found to be interesting.

4.3 Difference Analyzer

ZIPDIFF instructs each ZIP parser to read the sample ZIP file
and extract it onto the file system. Each parser either success-
fully produces an output directory or reports an error. The
difference analyzer computes a hash value of each successful
output directory for subsequent comparisons, as illustrated in
Algorithm 1 in Appendix A.

In preliminary experiments, we found that different parsers
often process invalid characters in filenames inconsistently.
However, inconsistencies in filenames are usually exploited
only for specific file paths, such as word/document.xml for
DOCX files. These specific paths usually do not contain in-
valid characters, so the inconsistency is only exploitable if the
filenames are valid and controlled by the attacker. To filter out
the non-exploitable filename inconsistencies, all filenames



containing special or invalid characters are considered equal
in the hashing process. Empty directories are also ignored in
hash computation because they are not exploitable.

After obtaining these hash values, the analyzer compares
each pair of parsers to see which pairs are inconsistent. Two
parsers are considered inconsistent on a test sample if they
both successfully extracted the sample file but the hash values
differ. We do not regard a successful parser and a failing
parser as inconsistent, because in practice inconsistencies are
exploitable only when both parsers succeed in parsing the
ZIP file. ZIPDIFF classifies the test samples into interesting
samples and boring samples. A sample is interesting if it is not
covered by any other seed in the corpus. We say that sample A
is covered by sample B if A does not introduce any additional
inconsistent parser pair or successful parser compared to B.
The interesting sample detection algorithm is presented in
Algorithm 2.

4.4 Mutation Strategy Selector
We implemented diverse mutation strategies targeting differ-
ent fields in the ZIP file format. Because certain field muta-
tions have a higher likelihood of triggering parsing ambigui-
ties, the fuzzer should prioritize these high-impact strategies
to enhance efficiency. However, accurately determining which
strategies are most effective requires sufficient sampling. Each
mutation strategy needs to be tested multiple times to reliably
assess its probability of causing parsing ambiguities.

In summary, we are now facing the classical problem of
maintaining balance between exploration and exploitation. To
solve this problem, we treat the mutation strategy selection
process as a multi-armed bandit problem and utilizes the
Upper Confidence Bounds (UCB) formula [7] to choose the
mutation strategies during the fuzzing process. The weight of
each mutation strategy is defined as follows:

wi :=
Ri

Ni
+

√
2ln∑

K
j=1 Ni

Ni
(1)

where Ni is the number of times the mutation is used, Ri is the
reward of the mutation gained from interesting samples, and
K is the total number of mutation strategies. When a sample is
mutated by multiple strategies in a single iteration, the usage
count and reward are shared among them evenly.

In contrast to the original UCB algorithm, ZIPDIFF uses
softmax (with a temperature parameter β) instead of argmax
to select from the available options randomly and avoid using
the same mutation strategy repeatedly:

choice := weighted rand
i∈[1,K]

(
eβwi

∑
K
j=1 eβw j

)
(2)

As opposed to the standard multi-armed bandit problem,
the outcome of each mutation strategy changes over time, as
the corpus evolves during the fuzzing process. To appreciate

this property, ZIPDIFF decays the recorded usage count and
reward over time by a rate of α in each iteration, so that recent
evaluation results are weighted heavier than the old ones. The
overall fuzzing process is illustrated in Algorithm 3.

5 Evaluation and Findings

5.1 Experiment Setup

To evaluate ZIPDIFF and measure the prevalence of ZIP pars-
ing inconsistencies, we collected 50 ZIP parsers across 19
programming languages, including 4 applications and 46 pro-
gramming libraries, as listed in Appendix B.

The applications are the most popular ones used by many
end users, namely Info-ZIP, WinRAR, 7-Zip and its fork p7zip.
For libraries, we use the official utility or example programs
if available. When a library only provide low-level APIs like
reading the file entries, we prefer wrapper libraries with high-
level operations such as extracting the whole archive. For
example, we use the miniunzip program provided by minizip
itself, and we use the ZeroTurnaround ZIP library as a wrapper
to test the ZIP classes provided by the Java standard library.
When a library provides options to perform integrity checks
for ZIP files, we enable these options.

Some libraries provide multiple sets of API to read ZIP
files, usually a standard parsing method and a streaming one,
as introduced in Section 2.1. In this case, we regard each set
of API as a separate parser. We usually choose the latest stable
version of each parser at the time of evaluation, with a few
exceptions. For example, we include both yauzl v2 and yauzl
v3, because a wrapper library extract-zip based on yauzl
v2 contributes more than ten million weekly downloads, 80%
of the yauzl weekly download count.

We check the dependency graphs and search for ZIP format
parsing logic in the code of every parser to ensure that the
parsers are substantially different and do not depend on each
other, except in the aforementioned situations where a sin-
gle library provide different APIs, when we include multiple
versions of the same library, or when we evaluate a library
through its wrapper library.

As we include a variety of parsers across many program-
ming languages, to ensure maintainable code and reproducible
evaluation, we configure each parser as a Docker image and
run them in isolated environments. In particular, we use wine
to run WinRAR in Docker on Linux to unify the evaluation
process. As Docker invocation is expensive, we run test cases
in batches, dispatching test cases in each batch inside the
Docker containers. All parsers run concurrently, while some
slow parsers also process multiple test cases in parallel to pre-
vent becoming the bottleneck and ensure maximal utilization
of available computing resources.

We conducted our experiments on a Linux server equipped
with a 2GHz 112-core CPU and 944GB RAM.



5.2 Findings
Based on the fuzzing results, we analyze the sample files in the
corpus and classify the identified ZIP parsing ambiguities as
14 distinct types and group them into three major categories:
redundant metadata, file path processing, and ZIP structure
positioning, as detailed in the following subsections.

In addtion to mutation-based fuzzing, we also constructed
sample files for each variant of the ambiguities and tested the
parsers against these samples. We summarize the number of
inconsistency types between each parser pair in Appendix C.
1221 out of a total of 1225 pairs of parsers are affected by at
least one type of ambiguity, demonstrating the prevalence of
inconsistencies across ZIP parsers.

5.2.1 Redundant Metadata

Metadata for each file in a ZIP archive is typically stored
in two locations, one in the local file header, and one in the
central directory header. This design facilitates error recov-
ery and allows streaming data processing, but it also leads to
ambiguities when the metadata in different locations disagree.
Some metadata are stored in extra locations besides LFH and
CDH, such as the extra fields and the data descriptors, enlarg-
ing the room for ambiguities. In addition to identical metadata
being stored in multiple locations, ambiguities can also occur
when different metadata fields are capable of deriving the
same piece of information.

Compression Method Confusion (A1). If the compres-
sion method specified in the CDH and the one specified in
LFH are different, the parser may implicitly choose one from
them. Although it is difficult or impractical to construct valid
compressed data that can be successfully decompressed by
multiple algorithms, ZIP allows storing a file without com-
pression, using the “stored” compression method. An attacker
can construct a ZIP file where the data is compressed but the
compression method in either CDH or LFH is modified to
“stored”. In this way, parsers that select the correct compres-
sion method are able to extract the meaningful content, while
the others that select the “stored” compression method will
directly use the compressed data as output.

File Size Confusion (A2). Two types of file sizes are stored
in ZIP files: the compressed size and the uncompressed size.
The uncompressed size is redundant because it can be derived
from the compressed data and the compression algorithm, but
the parser may use it to truncate or pad the decompressed
data. When the compression method is “stored”, these two
sizes should be identical, so the parser can choose either of
them. Besides CDH and LFH, both compressed and uncom-
pressed sizes can also be found in data descriptors and ZIP64
extended information extra fields if the respective features
are enabled. Moreover, a single CDH or LFH may contain
multiple ZIP64 extra fields. The size fields in the headers
are set to 0xFFFFFFFF when using ZIP64 and are set to zero
when using data descriptors, which might be mistakenly used

as the actual size by a parser not supporting these features. In
summary, there are virtually an unlimited number of sources
of file size information for the parser to choose from.

The integrity of files stored in a ZIP archive are protected
by the CRC32 checksum. This integrity check is not enforced
by many parsers, allowing attackers to manipulate the file data
without worrying about the checksum. However, even if the
integrity check is enforced, as CRC32 is not a cryptographic
hash function, it is easy to pad a byte sequence with extra bytes
while maintaining the CRC32 checksum unchanged [40],
making the File Size Confusion exploitation more powerful.

Filename Confusion (A3). In addition to CDH and LFH,
the filenames can also be stored in the Info-ZIP Unicode path
extra field (hereafter abbreviated as UP). UP was designed to
store a Unicode file path as an alternative to the ASCII file
path. However, it does not enforce the presence of Unicode
characters, and can be used to introduce a new source for the
ASCII filename. UP can override the original filename field,
but only a subset of parsers support this feature.

UP has three subfields, version, name CRC32, and Unicode
name. The version field is reserved for incompatible changes
in the future. The name CRC32 field is the CRC32 check-
sum of the original filename, used to verify that the Unicode
name is updated correspondingly when the original filename
is changed. When there are multiple UPs in the extra fields,
the parser has to select one of them. The selection strategy
of the UP among multiple extra fields is usually implicitly
implemented rather than intentionally designed. It can be
quite complex, as there are many factors that can influence
the selection process. We identified 6 edge cases: 1) The
parser may select the first or the last UP in the extra fields.
The extra field could be in the CDH or the LFH; 2) A UP
with a version field not equal to 1 may be discarded. Some
parsers discard only versions greater than 1, while others also
discard version 0; 3) When the original filename does not
match the name CRC32, the UP might be discarded; 4) In
the CRC32 check, some parsers use the filename field in the
CDH/LFH as the “original filename”, while some others use
the Unicode name from the previous UP; 5) When an invalid
UP is discarded, the parser may either continue processing
the remaining extra fields or stop. If it stops, the filename may
be set to the last valid Unicode name or the original filename
from the CDH/LFH; 6) There is a recently introduced lan-
guage encoding flag in the CDH and LFH. This flag allows
setting Unicode filenames directly in the original filename
fields, deprecating the use of UP. When the flag is set, some
parsers stop processing UP, while others still recognize UP.

Fake Directory (A4). Files stored in a ZIP archive can be
either a regular file or a directory. There are two information
sources to determine whether a file is a directory. The first
source is whether the file path ends with a slash. Most parsers
agree that a file path ending with a forward slash is a direc-
tory, except a few that do not think any file with a non-zero
size is a directory. However, file paths that end with back-



slashes are not universally treated as directories. The second
source is the external file attributes field in the CDH. This
field is host-system dependent. There are different flag val-
ues representing a directory on MS-DOS and Unix. Parsers
may rely on either or both of the flags on different systems.
The version made by field indicates the host system. Some
parsers determine the interpretation of external file attributes
based on the host system. Some parsers only recognize the
Unix directory flag when the host system is Unix, but the Go
package archive/zip also recognizes the flag when the host
system is OS X.

Fake Encryption (A5). When two parsers disagree about
whether a file in a ZIP archive is encrypted, and the file data
is actually unencrypted, only the parser that identifies it as
unencrypted will successfully extract the file contents. This
disagreement can arise from LFH-CDH confusion or from
differences in parser support for file encryption. Furthermore,
since ZIP archives typically encrypt either all files or none
of them, some parsers give up processing the entire archive
upon encountering an encrypted file. Consequently, if only
the first file in an archive is encrypted, certain parsers will fail
to extract any remaining files.

5.2.2 File Path Processing

A ZIP archive stores not only the contents of the files, but
also the paths to these files. Discrepancies related to file paths
usually enable attackers to effectively switch which file is at a
specific path, thereby manipulate the contents of file formats
that use ZIP as a contanier.

Duplicate Files (B1). When two or more files in a ZIP
archive share the same path, and the parser is asked to retrieve
the file at this path, it has to either intentionally or implicitly
make a choice, where different parsers have divergent policies.
Duplicate files also serve as a basis for other parsing ambigui-
ties in this category. For example, suppose that two parsers
A and B both select the last one among duplicate files, then
the Duplicate Files ambiguity cannot be exploited on its own.
However, with the help of some other parsing ambiguities, it
would be possible to make parser A treat two files as both
having the same path x, while parser B thinks the first file has
path x but the second file has path y. When asked to retrieve
the file with path x, parser A will see two files with path x and
choose the second one, but parser B will choose the first file
as it is the only file with the given path.

Invalid Characters (B2). Some characters are considered
invalid in file paths, such as ASCII control characters, invalid
Unicode, and “"*:<>?|” on Windows. Parsers may remove
invalid characters or replace them with placeholders like “_”
or “?”. The valid character set and the processing mechanisms
are different for each parser. Some parsers choose the text
encoding based on the host system indicated by the version
made by field. When encountering the null character, the file
path string could be terminated in the middle.

Path Canonicalization (B3). There are multiple string rep-
resentations of a single file path. For example, we can insert
redundant slashes “//”, replace forward slashes with back-
slashes, or use single dot “.” and double dots “..” to represent
the current directory and the parent directory. The attacker
can construct a ZIP archive (an ODT document) contain-
ing two files with paths content.xml and ./content.xml.
When retrieving the file at a certain path, different parsers
may canonicalize the file paths inconsistently, so that some
parsers think two files share the same path, while the other
parsers think they are of different paths.

Case Sensitivity (B4). Most parsers compare file paths
case-sensitively, but some parsers, especially those running
on Windows, handle file paths in a case-insensitive manner.
As a result, files with paths differing only in letter casing may
be regarded as duplicates.

5.2.3 ZIP Structure Positioning

Before processing the file metadata and file paths, the first
step in parsing a ZIP file is to determine the positions of the
ZIP structures, i.e. to parse the EOCDR and the central direc-
tory. If parsers read the headers and file data from different
positions, the parsing result may be completely different.

Streaming Parsing (C1). The standard mode for reading
ZIP files is to use the information in the EOCDR to locate
the central directory, and then locate individual LFHs through
CDHs. Apart from that, LFHs can also be read sequentially
from front to back in streaming mode, which introduces po-
tential ambiguities. We describe several construction methods
below. Although they utilize the same ambiguity, the diverse
construction techniques make ambiguity detection difficult.
If detection is not comprehensive, it may be bypassed.

1) No corresponding CDH for LFH. Parsers in standard
mode usually only process LFHs referenced by CDHs, while
parsers in streaming mode process all LFHs encountered
during reading. If a file in the archive only has an LFH but no
corresponding CDH, it is likely that only streaming parsing
can read this file.

2) Truncating the LFH stream. In streaming mode, the
parser reads consecutive LFHs until the end, where the end
marker may be any non-LFH data, CDH, or EOCDR. How-
ever, in standard mode, LFHs can be placed anywhere, in-
cluding after CDHs or even after the EOCDR. To avoid being
detected as an anomaly, either the LFH can be put inside the
comment field of a CDH or EOCDR, or the CDH or EOCDR
that terminates the LFH stream is not the real one used in the
standard mode.

3) LFH desynchronization. In streaming mode, an LFH
must follow the previous entry’s file data, while standard
mode allows arbitrary LFH positioning. Thus, LFH positions
can differ: a standard mode LFH might be placed where
streaming mode expects file data. This may cause stream-
ing parsers to misinterpret the LFH as part of the file data,



thus missing the LFH. This can be implemented by either
including only these asynchronous LFHs (creating “holes”
of unused bytes in standard mode) or both streaming and
asynchronous LFHs (causing entry overlap in standard mode).
Detection requires checking for such holes and overlaps.

4) Data descriptor position. ZIP’s data descriptor feature,
designed for streaming creation of ZIP files, places file sizes
and checksum after the file data. In streaming parsing, without
file size information in the LFH, the data descriptor’s position
(i.e., the end of file data) is uncertain. Parsers usually search
for its signature to determine its position and may verify that
its information matches the actual file data. A crafted file
structure can make streaming parsers end file data at the data
descriptor signature, while in standard mode, the signature is
part of the file data. This can desynchronize LFH processing
between the two modes. With a careful design, file sizes and
other information can appear self-consistent in both modes,
without causing holes or overlaps. To prevent this, streaming
parsers should report an error when a data descriptor is used
and the file size is unknown. Notably, compression methods
like Deflate inherently record the file size, so the position is
known even when using a data descriptor.

EOCDR Selection (C2). The EOCDR is placed at the
end of the ZIP file with a variable size to store the ZIP file
comment. It is possible to create a ZIP file containing mul-
tiple EOCDR signatures, all of which can be regarded as
valid EOCDRs, since EOCDR signatures can be treated as a
part of the comment field in an EOCDR. Most parsers scan
the ZIP file backward from the end and choose the first en-
countered EOCDR signature. As a consistency check, some
parsers verify that the comment length field either matches
or is not bigger than the actual length of the comment. When
the consistency check fails, the parser may either report an
error or skip the EOCDR with an incorrect comment length
and continue searching for the next one. In the latter case, the
parser may choose a different EOCDR from other parsers that
do not perform this consistency check.

The EOCDR selection policy used in libzip is unique and
more complex. For an EOCDR, libzip first checks if there
are inconsistencies such as incorrect comment length or mis-
matched field values in a pair of CDH and LFH. When no
inconsistency is found, it calculates a “consistency” score
based on the bounding byte range reached in the file, which
is effective in detecting the outermost one among nested ZIP
archives. Finally, the EOCDR with the highest “consistency”
score is selected. With this policy, an attacker can create some
inconsistency in the ZIP structure corresponding to the last
EOCDR to trick libzip into using another EOCDR.

CDH Count Confusion (C3). The EOCDR provides infor-
mation to parse the central directory, including the number
of entries in the central directory. In particular, it provides
two different forms of CDH count, one total CDH count, and
one CDH count in the current disk, as ZIP files can be split
into multiple disks. It also provides the size and the posi-

tion of the central directory. All of these four fields can be
used to determine the CDH count and may conflict with each
other. We identfied 3 edge cases: 1) The total CDH count
and current disk CDH count should match but may conflict
when there is only a single disk; 2) The parser might read all
CDHs inside the central directory, regardless of the values of
the CDH count fields; 3) The parser may respect the central
directory size field, or use all bytes until the EOCDR as the
central directory.

In addition, as the CDH count fields are 16-bit, they are
insufficient to represent large central directories with more
than 65535 entries. As a workaround, some ZIP implementa-
tions store the actual CDH count modulo 65536 in EOCDR.
Consequently, it is possible that two parsers both respect the
same CDH count field, but one of them thinks there is only a
single CDH, while the other thinks there are 65537 CDHs.

CD & LFH Offset Confusion (C4). The central directory
is usually located by the offset field in the EOCDR. But some
parsers assume that the EOCDR immediately follows the
central directory with no gap between them, and thus use the
central directory size to determine its position.

When the offset and the size fields in the EOCDR mismatch,
it does not necessarily indicate that there is a gap between the
central directory and the EOCDR. It is also possible that the
ZIP file is padded with extra bytes at the beginning without
adjusting the offset fields. For instance, this happens in self-
extracting archives, where executable code is prepended to a
ZIP archive to extract itself. In order to support this use case,
some parsers not only assume that the EOCDR immediately
follows the central directory, but the offset fields in the CDHs
that point to the LFHs are also adjusted correspondingly. For
example, if the offset field in EOCDR has value x, but the size
field indicates that the actual offset to the central directory is
x+δ, then for a CDH with LFH offset value y, the parser will
use y+δ as the actual offset to locate the LFH.

ZIP64 EOCD Processing (C5). The ZIP64 extension was
developed to support ZIP files larger than 4GB and with more
than 65535 files. It mainly consists of the ZIP64 extended
information extra field, the ZIP64 end of central directory
record (ZIP64 EOCDR), and the ZIP64 end of central direc-
tory locator (ZIP64 EOCDL). The ZIP64 EOCDL has a fixed
size and contains the offset to the ZIP64 EOCDR whose size
is variable. This design enables determined processing of the
ZIP64 EOCDR without the need to search for its signature,
but it also introduces more discrepancies. We identified the
following ambiguities in ZIP64 EOCD processing: 1) The
ZIP64 EOCDL can be located by a fixed offset from the regu-
lar EOCDR, or by searching for its signature; 2) The ZIP64
EOCDR can be located based on the ZIP64 EOCDL, or by
searching for its signature; 3) It is unclear whether to use the
ZIP64 EOCDR or the regular EOCDR. A parser may use
the ZIP64 one whenever it is present, or only use the ZIP64
one when the fields in the regular one are set to 0xFFFFFFFF;
4) If only a part of the fields in the regular EOCDR are set



to 0xFFFFFFFF, it is unclear whether to read all fields from
the ZIP64 EOCDR, or to partly read from the regular one
and mix fields from both ZIP64 and the regular EOCDR; 5)
ZIP64 EOCDR provides an extra chance to suffer from the
same issues as the regular EOCDR, including CDH Count
Confusion (C3) and CD & LFH Offset Confusion (C4).

5.3 Ablation Study
To evaluate our design decisions, we conducted an ablation
study by comparing the performance of the following setups:

• Full Setup: As described in Section 4.

• Argmax-Based UCB: Use the original argmax-based
UCB algorithm instead of our version that uses softmax
for more randomness in mutation (Section 4.4).

• Byte Mutation Only: Use only the general byte-level
mutations but not the ZIP-level mutations tailored for
individual fields in the ZIP file format (Section 4.2).

We ran five 24-hour fuzzing sessions for each setup and
plot the results in Fig. 4. The median numbers of discovered
inconsistent parser pairs are 1197, 1183, and 1055 for the
three setups, where the full setup outperforms the others. The
softmax-based UCB algorithm allows exploring different mu-
tation strategies in the same batch. The ZIP-level mutations
can generate more valid samples and trigger more inconsis-
tencies by focusing on mutating individual fields.
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Figure 4: Median number of inconsistent parser pairs over
time for each experiment setup.

6 Real-world Exploitations

In this subsection, we present five real-world scenarios where
inconsistencies between ZIP parsers are weaponized. These
scenarios target inconsistencies between different pairs of
parsers in various applications, demonstrating the broad im-
pact of ZIP parsing ambiguities.

Table 1: Antivirus bypass results for email products. The
Filename Confusion (A3) type and the File Path Processing
(B) category involve the filenames rather than the contents,
so they have impacts on container formats but not antivirus
bypass and are therefore excluded here.

 Vulnerable #Not Vulnerable

Product
(A) Redundant

Metadata (C) ZIP Structure
Positioning

1 2 4 5 1 2 3 4 5

Coremail       #   
Gmail # # # #   # #  
iCloud #         

inbox.lv   #  #     
mail.com   #     #  
mail.ru     #     
Naver # #      # #

Outlook   # #   #   
Proton   #       
Zoho # # # # #  # #  

6.1 Secure Email Gateway Bypass
This scenario targets parsing inconsistencies between an-
tivirus scanners and ZIP unarchivers. An attacker can craft a
malicious ZIP file containing malware that can be extracted
by a ZIP unarchiver but cannot be detected by the antivirus
scanner. For example, the antivirus scanner might read trun-
cated malware, treat compressed malware as uncompressed,
regard the malware as a directory instead of a regular file, or
assume that the malware is encrypted and give up processing.

For host-based antivirus software, this kind of bypass usu-
ally has limited impact since the malware is likely to be de-
tected during on-access scanning when the user extracts the
ZIP archive. However, it is more critical in remote environ-
ments such as secure email gateways, where host-based de-
fense might be absent in the end user’s system. For instance,
Gmail will scan attachments in the emails and display a note
“Scanned by Gmail” besides the attachments. When a user
receives an email with an attachment passing the secure email
gateway, they may trust its content based on the scanning
result and open it through a ZIP unarchiver that is able to
extract the malware, and then the system will be infected.

We tested various ZIP parsing ambiguity constructions on
popular email products that provide virus scanning services
and allow us to register free testing accounts. We first send
an email to our testing account with a safe ZIP attachment to
verify that it can be delivered to the inbox and another email
with a well-formed ZIP file containing malware to verify that
it is rejected. Then we send emails with malformed ZIP files
with malware for antivirus bypass testing. All tested email
products are vulnerable to some construction methods, as
listed in Table 1.



6.2 Office Document Content Spoofing

This scenario targets parsing inconsistencies between differ-
ent office applications, including office suites like Microsoft
Office and LibreOffice, as well as Web applications such as
plagiarism checkers and AI assistant services (e.g. ChatGPT,
Claude, DeepSeek, etc.) that process office documents.

An office document is a ZIP file containing some XML
files. The document content is stored in the file with a cer-
tain file path, such as word/document.xml in DOCX files
and content.xml in ODT files. An attacker can construct
an office document that is parsed inconsistently by differ-
ent applications, so that these applications will see different
document content.

The security implications of content spoofing depend on
the specific use cases. A representative case is plagiarism
checker bypassing, where an unethical student can construct
a document such that plagiarized content is displayed in the
office suite but hidden from the plagiarism checker. The super-
visor reads the document in the local office suite application
and sends the document to a remote service to detect plagia-
rism. The supervisor will read the plagiarized content but may
trust its originality based on the plagiarism checker report.

Case Study 1. The plagiarism checker provided by China
National Knowledge Infrastructure locates the XML file case-
insensitively and picks the last one among duplicate files.
In contrast, Libreoffice ignores WORD/DOCUMENT.XML in up-
percase, vulnerable to Case Sensitivity (B4). WPS Office on
Windows locates the file case-insensitively but selects the first
one among duplicate files, vulnerable to Duplicate Files (B1).

Case Study 2. A dishonest student can construct a docu-
ment with the structure shown in Fig. 5. The two columns of
the table represents two possible parsing results, where each
row in both columns represents the same bytes in the ZIP
file. It exploits ZIP64 EOCD Processing (C5), where ZIP64
EOCDR and EOCDL are present in the ZIP file, but the fields
in the regular EOCDR are not set to 0xffffffff as required
in the specification. In this case, Microsoft Office, LibreOffice,
and WPS Office will ignore the ZIP64 EOCDR and use the
central directory corresponding to the regular EOCDR, thus
reading the word/document.xml with plagiarism, as the right
column in Fig. 5, where the extra word/document.xml and
ZIP64 EOCD are treated as a CDH comment field by set-
ting the comment length field in the last CDH. However,
the PapersOwl plagiarism checker will recognize the ZIP64
EOCDR and read the word/document.xml without plagia-
rism, as the left column in Fig. 5, so it will report no plagia-
rism in the document. In addition, the Grammarly plagiarism
checker works in the Streaming Parsing (C1) mode. It also
parses the document as the left column, but it reads the LFHs
one by one instead of relying on the ZIP64 or regular EOCDR.

Figure 5: Plagiarism checker bypass example

Figure 6: LibreOffice document signature forgery example

6.3 LibreOffice Document Signature Forgery
This scenario targets parsing inconsistency between the signa-
ture verifier and the document viewer of LibreOffice. Suppose
that the attacker has obtained a legitimately signed document.
With the legitimate signature and the corresponding document
content, the attacker can construct a malicious document. Due
to parsing inconsistency, the signature verifier sees the origi-
nal legitimate content and reports that the signature is valid.
However, the document viewer displays the manipulated con-
tent, leading to signature forgery.

Different components in a single application usually use
the same parser and are thus not vulnerable to parsing dis-
crepancies. In this specific case, LibreOffice indeed uses the
same parser for signature verification and document display.
However, the parser has a normal mode and a recovery mode,
where the normal mode detects inconsistencies in the ZIP file
but the recovery mode ignores errors and works in the stream-
ing parsing mode. When the parser in the normal mode finds
a document to be corrupted, it will use the recovery mode to
display the document, but the signature validation still uses
the normal mode and the valid status remains unchanged.

Case Study. Based on a signed document, the attacker
modifies the original word/document.xml entry to change
its filename field in the LFH and adds a new entry with file-



name field word/document.xml in LFH to exploit the File-
name Confusion (A3) ambiguity, as illustrated in Fig. 6. The
signature verifier will validate the signature against the file
with word/document.xml as CDH filename, but the docu-
ment displayer will show the file with word/document.xml
as LFH filename after entering the recovery mode.

6.4 Spring Boot Nested JAR Signature Forgery

This scenario targets parsing inconsistency between two JAR
parsers used by the NestedJarFile class in Spring Boot
Loader. A custom ZIP parser ZipContent is implemented
to read the content of a JAR file, which operates in the stan-
dard ZIP parsing mode. However, the JarInputStream class
provided by Java is utilized to verify its signature, with the
Streaming Parsing (C1) mode. Therefore, with a legitimately
signed nested JAR file, the attacker can forge a new one with
arbitrary contents and pass the signature verification.

6.5 VS Code Extension ID Impersonation

This scenario targets parsing inconsistency between the VS
Code extension Marketplace server and the VS Code client.
VS Code extension packages are ZIP files. The Marketplace
ensures that authors can publish extensions only within their
own namespaces. The publisher and extension ID are recorded
in the extension.vsixmanifest file. The server and the
client are vulnerable to Filename Confusion (A3), allowing the
attacker to construct an extension package such that the server
and the client read different extension.vsixmanifest files
and thus different publishers, and then the attacker will be
able to circumvent the namespace isolation rule.

Case Study. Suppose that the attacker owns the namespace
attacker and the target extension is bob.foo. The attacker
can publish a malicious extension exploiting the Unicode
path extra field such that the Marketplace server recognizes
its ID as attacker.bar but the VS Code client reads its ID as
bob.foo, as demonstrated in Fig. 7. Consequently, if a victim
user installs the malicious extension, it will impersonate the
target extension and replace the originally installed one.

Figure 7: VS Code extension ID impersonation example

7 Discussion

7.1 Responsible Disclosure

We have reported our findings to the affected vendors and
coordinated in addressing these issues. We received many
acknowledgments and bounty awards, as summarized below.

7.1.1 Email Services

• Gmail: acknowledged our report, rated the vulnerability
as medium severity with a bug bounty reward of $1337,
and deployed defense against the reported issues.

• Coremail: acknowledged our report, rated the vulnera-
bility as medium severity with a bug bounty reward of
about $400, and arranged to fix the reported issues.

• Zoho: acknowledged our report, rated the vulnerability
as medium severity with a bug bounty reward of $200
and deployed defense against the reported issues.

• Outlook: acknowledged our report and rated the vulner-
ability as low severity with an entry in the MSRC Online
Services Acknowledgements. They also improved their
antivirus scanning logic according to our report.

• Proton Mail, Naver, mail.com, and mail.ru: our reports
were acknowledged but not eligible for bounty rewards.

• iCloud: said they were still investigating our report.

• inbox.lv: has not responded to our report yet.

7.1.2 Office Applications

• LibreOffice: promptly acknowledged our reports on
both content spoofing and signature forgery. They car-
ried out an in-depth conversation with us and inspired us
to develop some novel bypass techniques against their
proposed patches. They fixed these issues and assigned
CVE-2024-7788 for the signature forgery vulnerability.

• cnki.net: acknowledged our report on plagiarism scan-
ning bypass and planned to fix the issue.

7.1.3 ZIP Parsers

• Go archive/zip: acknowledged our report, assigned
CVE-2024-24789, and changed their implementation
to reject truncated EOCDR comments.

• libzip: acknowledged our report and changed their
unique implementation of EOCDR selection to align
with other parsers in the lax mode and report an error
in the strict mode. They have also implemented stricter
consistency checks according to our suggestions.



7.1.4 Others

• Spring Boot: acknowledged our report, assigned CVE-
2024-38807, and fixed the vulnerability.

• Open VSX: acknowledged our report and implemented
a check for malicious extension packages.

7.2 Mitigation
We propose seven mitigation strategies with different con-
cerns and trade-offs. Developers can choose the most appro-
priate mitigation according to the specific situation.

Use the same parser. If all parsers used in a workflow
are controlled by the same party, then the best solution is to
use the same parser in all places. However, the parsers are
usually controlled by multiple parties, where no single party
can control the parsers used by others, so this simple solution
has limited applications.

On-access scanning. Antivirus software typically uses on-
access scanning to compensate for the shortcomings of di-
rectly scanning archive files. This is not only a solution for
antivirus, but the same concept also applies to other scenar-
ios, where a component can use the parsing result of another
component instead of parsing the ZIP file again. It can be
regarded as a special way to enforce using the same parser.
For example, a plagiarism checker may work directly inside
an office suite, using the parsing result from the office suite.

Normalize the ZIP file. To exploit ZIP parsing ambiguities,
the attacker usually needs to carefully manipulate the fields
of a ZIP file, which cannot be achieved by a regular ZIP
archiver. Most ambiguities will disappear if the ZIP file is
first extracted and then repacked. Therefore, if we care about
only the contents but not the integrity of the whole ZIP file,
we can normalize the ZIP file by extracting and repacking it
before processing.

Identify ambiguous patterns in ZIP files. Malformed ZIP
files can be identified by special patterns, such as unused
bytes and conflicting field values in CDH and LFH. For in-
stance, libzip provides a CHECKCONS flag with intensive con-
sistency checks, and LibreOffice warns users of malformed
document files. A service may reject or report all malformed
ZIP files without affecting legitimate users, as malformed files
are usually intentionally crafted. However, the identification
of ambiguous patterns relies on existing knowledge, and pre-
viously unknown ambiguities are hard to detect. In addition,
malformed ZIP files also have legitimate use cases, such as
self-extracting files with prepended executable code and APK
with signature data before the central directory.

Incorporate different parsing logics. Instead of relying on
some pre-defined patterns, a service can identify ambiguous
ZIP files by incorporating multiple parsers to see if they pro-
duce consistent outputs. This can potentially detect previously
unknown ambiguities. However, a large number of parsers are
needed to cover all ambiguities, and it may consume a large

amount of system resources to extract an archive multiple
times. An alternative approach is to combine multiple parsing
logics or try all possible choices in a single parser. For in-
stance, Gmail identifies all CDHs and the corresponding files,
even if they are overlapped or outside of the central directory.

Fix unique parsing behaviors. Parsing ambiguities can also
be mitigated by making parsers behave consistently. Since the
ZIP specification is vague and lacks many important details,
there is no de facto standard, and it is usually infeasible to
determine which parsers are correct when the implementa-
tions are inconsistent. It is challenging to collaboratively fix
inconsistencies without the presence of a standard, but we
can address the outlier behaviors where a few parsers behave
differently from the majority of other parsers.

Better file format design. If we were able to redesign the
ZIP file format or to design a new archive format, we could
learn from the history and design a better file format:

• Each part of a format must be unambiguously located. It
is a bad idea to rely on fragile signature searching.

• Conflicting data resolution should be clearly defined,
ideally by avoiding redundant data in the first place.

• Leave room for backward-compatible feature extensions.
Make it clear whether an extension is enabled or not.

• Fields that are allowed to be silently ignored should not
contain security-sensitive data. For example, the extra
fields in ZIP should not contain filenames and sizes.

7.3 Limitation
We chose blackbox fuzzing so that we can support more
parsers and programming languages to uncover more ambigu-
ities. As a blackbox fuzzer, ZIPDIFF only receives the parsing
outputs as feedback and does not utilize greybox feedback
like code coverage. It might generate more sophisticated test
samples with cross-language coverage-guided fuzzing.

ZIPDIFF instructs the parsers to extract ZIP archives onto
the file system in order to unify the testing process and pro-
vide easier parser integration. However, the output on the file
system might not match the internal parsing result exactly.
For example, duplicate files may be overwritten either in the
internal state or when writing to the file on the disk. It may
obtain more accurate results if the internal states are recorded.

Although we only identified vulnerabilities in five scenar-
ios, the ZIP file format is also used in other security-sensitive
scenarios. Further research may extend our results to broader
fields. For instance, the 3MF data format used in 3D printing
is based on ZIP and vulnerable to UI spoofing attacks [33].
While we focus on plagiarism checkers for the office docu-
ment content spoofing scenario, it is also interesting to see
whether this can be used for indirect prompt injection attacks
against large language models.

Besides ZIP, other archive formats like TAR also suffer
from parsing ambiguities [19]. However, ZIP is structurally



more complex, consisting of LFHs, CDHs, and EOCDR. In
contrast, TAR uses a simpler linear header structure, supports
fewer extensions, and separates archiving from compression.
We focus on ZIP in this paper because its complexity makes
it more prone to semantic gaps. ZIPDIFF could be extended
to handle other archive formats by replacing the ZIP-level
mutations with other format-specific mutation strategies. We
leave this extension as future work.

8 Related Work

8.1 Semantic Gaps and Differential Testing
There is a rich literature on semantic gaps in various as-
pects of network security, including TLS [8,10,13,21,37,41],
RPKI [24], QUIC [31], HTTP [11, 18, 35, 44, 50], CSP [46],
URL [5, 32, 36, 39, 45, 47], HTML [22], JSON [25], and
Email [12, 43, 49]. These works use various methods to ana-
lyze semantic gaps, ranging from manual, ad-hoc testing to
blackbox and greybox differential fuzzing.

Petsios et al. developed a domain-independent differential
testing framework called NEZHA [28] and demonstrated its
effectiveness by uncovering parsing discrepancies in ELF, XZ,
PDF, and TLS. Our fuzzer ZIPDIFF determines interesting
seeds by two metrics ok and incons, as illustrated in Algo-
rithm 2. The ok metric is essentially the output δ-diversity
proposed by Petsios et al., if we only care about the success
status but not the output contents. Since ZIP parsers produce
complex file trees as outputs, it is impractical to use the entire
output contents as the output diversity. To utilize the output
contents in fuzzing guidance, ZIPDIFF uses pairwise equality
as the incons metric.

Zheng et al. [50] incorporated the UCT-Rand algorithm to
select grammar nodes in their generation-based fuzzer RE-
QSMINER. In contrast, our mutation-based fuzzer ZIPDIFF
utilizes UCB to guide mutation strategy selection. We use the
softmax function as a balance between the original argmax-
based UCB and UCT-Rand.

8.2 ZIP Parsing Ambiguities
As early as 2008, Alvarez and Zoller presented a talk [34, 51]
on antivirus evasion based on parsing discrepancies of various
archive formats, including ZIP, RAR, and CAB. They revis-
ited these issues in 2020 [52] and found that many antivirus
engines are still vulnerable. Vuksan et al. gave a similar talk
in 2010 [42], revealing more bypass techniques. Coldwind
also presented talks [14, 15] that summarized attack surfaces
of the ZIP file format including parsing ambiguities.

Jana and Shmatikov [19] proposed two types of an-
tivirus bypass attacks based on file parsing ambiguities: the
Chameleon attack exploits conflicting file type detection and
the Werewolf attack exploits inconsistent parsing logic of the
same file type. Their work suggested that many file types are

vulnerable to both attacks, including archive formats like ZIP
and other formats like ELF.

Panakkal [26] summarized several vulnerabilities on mal-
formed APK files, and constructed a ZIP file that can be rec-
ognized as multiple container formats by mixing files related
to different formats.

Two more vulnerabilities are also caused by ZIP pars-
ing ambiguities. One [16] exploits inconsistencies between
parsers used in the Mozilla Firefox add-on review pipeline to
submit malicious add-on that appears benign at review time.
The other [23] exploits a custom signature mechanism utiliz-
ing the file comment field in the EOCDR to bypass signature
verification in firmware updates.

In summary, there is a lack of systemantic research on ZIP
parsing ambiguities, with most previous studies focusing on
individual vulnerabilities. Our work provided the first system-
atic synthesis of existing knowledge, developed a differential
fuzzer, uncovered additional ambiguity classes, extended con-
struction techniques, delivered an up-to-date evaluation of
50 parsers across 19 programming languages, and identified
vulnerabilities in novel scenarios.

To the best of our knowledge, among the 14 ambiguity
types, ten of them are discovered or extended by us with
novel variants and techniques to cause more inconsistencies
and bypass some checks. Details are listed in Table 2.

Table 2: Novelty of the ZIP ambiguity types
# New ambiguity discovered by us − Known ambiguity

Type Novel New type, variant, or technique

A1 − -
A2 # Multiple ZIP64 & Fixing CRC32
A3 # Unicode path extra field techniques

A4 #
Filename ending with backslash &
Host system support in file attributes

A5 #
CDH vs LFH inconsistency for the
“encrypted” general purpose flag

B1 − -

B2 #
Special characters besides null byte &
Affected by the host system field

B3 # The entire type is novel
B4 − -

C1 #
Multiple construction techniques to
bypass inconsistent ZIP file checking

C2 #

Coldwind [15] mistakenly stated
that libzip selected the first EOCDR.
We identified the real mechanism
used by libzip and some other parsers.

C3 # Total vs current disk CDH count
C4 − -
C5 # The entire type is novel



8.3 Other ZIP Attacks
Besides parsing ambiguities, the ZIP file format also suffers
from other attacks, such as ZIP bomb and ZIP Slip.

The data amplification attack, known as ZIP bomb, exhausts
remote servers’ resources by highly-compressed ZIP files.
Pellegrino and Balzarotti [27] investigated the use of data
compression in network services and analyzed relevant pitfalls
and vulnerabilities. Canet et al. [9] focused on decompression
quines, archives that decompress to themselves, and their
impact on antivirus engines. Fifield [17] constructed a ZIP
bomb that reaches a compression ratio of over 28 million by
overlapping entries in a ZIP file, without the need of nested
archives or uncommon compression algorithms. Their work
also highlighted the compatibility issues among ZIP parsers,
although from a perspective of finding universally working
ZIP bombs rather than exploiting these inconsistencies.

ZIP unarchivers are also vulnerable to path traversal at-
tacks, where files with malicious paths (../) are extracted
outside of the target directory. The earliest instances of such
vulnerabilities on the CVE list are CVE-2001-1268 [1] and
CVE-2001-1269 [2]. Years later, the Synk security team iden-
tified many ZIP applications were vulnerable and branded the
vulnerability as ZIP Slip [38].

Mitigation of path traversal can lead to inconsistencies
in Path Canonicalization (B3). For example, some parsers
remove ../ in the file paths, while others resolve them and
check whether the final result is inside the target directory.
A file path foo/../bar is transformed to foo/bar in the
former, but bar in the latter.

9 Conclusion

This paper presented the ZIPDIFF differential fuzzing tool and
evaluated it on 50 ZIP parsers across 19 languages. The result
revealed that almost all pairs of ZIP parsers are inconsistent.
We summarized ZIP parsing ambiguities as 14 distinct types
in three categories with different root-causes. These ambigui-
ties can be exploited in various real-world scenarios as ZIP
is used in numerous applications. The vulnerabilities can be
mitigated by incorporating suitable defense strategies.

By examining ZIP parsing ambiguities as a specific in-
stance of the broader problem on semantic gaps, our work
highlights the critical need for rigorously defined file formats
and consistent parser implementations. We hope this study
not only inspires the community to identify and reduce dis-
crepancies between ZIP parsers and to address the relevant
vulnerabilities, but also raises general awareness of the secu-
rity implications of semantic gaps.
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A Algorithms

Pseudocode for the algorithms used in Section 4 are listed in
Algorithm 1, Algorithm 2, and Algorithm 3.

Algorithm 1 Directory Hash Computation

Input: The path to the directory.
Output: The hash value of the directory Hash(path).

1: H← empty hasher
2: if path is a symbolic link then
3: Update H with ‘L’
4: Update H with the link target
5: else if path is a regular file then
6: Update H with ‘F’
7: Update H with the file content
8: else if path is a directory then
9: Update H with ‘D’

10: C← empty list
11: for each entry in the directory do
12: digest← Hash(entry)
13: if digest is empty then
14: Skip to the next entry // empty directory
15: end if
16: He← empty hasher
17: if entry has special characters in base name then
18: // Ignore inconsistent special characters
19: Update He with ‘S’
20: else
21: Update He with ‘N’
22: Update He with the base name of entry
23: end if
24: Update He with digest
25: Insert He. f inalize() into C
26: end for
27: if C is empty then
28: return empty
29: end if
30: Sort C alphabetically // entry order does not matter
31: for each digest in C do
32: Update H with digest
33: end for
34: end if
35: return H. f inalize()
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Algorithm 2 Interesting Sample Detection

Input: Parser outputs O corresponding to the input sample.
Output: Whether the sample is interesting. The sample is

inserted into the corpus if it is interesting. Old samples
covered by the new sample are removed from the corpus.

1: ok←{parser | O(parser) is not failure}
2: incons←{(p,q) ∈ ok2 | Hash(O(p)) ̸= Hash(O(q))}
3: for each s in the corpus do
4: if ok ⊆ s.ok and incons⊆ s.incons then
5: return false
6: end if
7: if ok ⊇ s.ok and incons⊇ s.incons then
8: Remove s from the corpus
9: end if

10: end for
11: Insert the sample and (ok, incons) into the corpus
12: return true

Algorithm 3 Fuzzing With UCB-Based Mutation Selection

Input: K mutation strategies, batch size B, UCB weight de-
caying rate α, softmax temperature β.

Output: A corpus of interesting ZIP file samples.
1: Initialize R and N as arrays of K zeros // reward & count
2: loop
3: for i← 1 to K do
4: R(i)← α ·R(i) // decay weights
5: N(i)← α ·N(i)
6: end for
7: n←max

(
∑

K
i=1 N(i),1

)
// max(·,1) to avoid ln0

8: wi← R(i)
max(N(i),1) +

√
2lnn

max(N(i),1) // avoid div by 0

9: σ(w)i← eβwi

∑
K
j=1 eβw j

// apply softmax to UCB

10: I← empty list
11: for i← 1 to B do
12: Select a seed s from the corpus
13: M← empty list
14: loop
15: m← a random mutation with weights σ(w)
16: s← mutate s by strategy m
17: Insert m into M
18: Break loop with 50% probability
19: end loop
20: Insert (s,M) into I
21: end for
22: Test all inputs I against every parser in parallel
23: for each (s,M) in I do
24: for each m in M do
25: if sample s is detected as interesting then
26: R(m)← R(m)+ 1

|M|
27: end if
28: N(m)← N(m)+ 1

|M|
29: end for
30: end for
31: end loop

B Tested Parsers

We tested the ZIP parsers listed in Table 3. Asterisks are used
to mark parsers that are provided as a built-in feature of the
programming language, such as standard libraries.

C Parser Inconsistency Table

Table 4 provides the number of inconsistency types between
ZIP parser pairs. The numbers could be inaccurate when com-
paring a standard mode parser with a streaming mode parser,
because test samples for other ambiguity types, especially
those in the ZIP structure positioning category, might cause
inconsistencies due to different parsing modes. The complete
list of inconsistency types can be found in the artifacts.



Table 3: Tested ZIP parsers. GitHub stargazer counts were retrieved on June 12, 2025.

# Name (API) Language (*built-in) Version GitHub Star
1 Info-ZIP C 6.0 -
2 7-Zip C++ 24.08 1.5k
3 p7zip C++ 16.02 -
4 WinRAR C++ 7.01 -
5 Zip-Ada Ada 59 28
6 go-unarr C 0.2.4 292
7 libarchive C 3.7.7 3.2k
8 libzip C 1.10.1 918
9 minizip C 1.3.1 6.2k

10 minizip-ng C 4.0.8 1.3k
11 zip C 0.3.2 1.5k
12 zziplib C 0.13.78 68
13 DotNetZip C# 1.16.0 550
14 SharpCompress C# 0.38.0 2.4k
15 SharpZipLib C# 1.4.2 3.8k
16 System.IO.Compression C#* 9.0.0 -
17 Android libziparchive C++ 34.0.5 -
18 POCO C++ 1.13.3 9k
19 std.zip D* 2.109.1 -
20 archive Dart 3.6.1 445
21 zip Erlang* 27.1.2.0 -
22 archive/zip Go* 1.22.3 -
23 zip Haskell 2.1.0 84
24 zip-archive Haskell 0.4.3.2 46
25 Commons Compress (stream) Java 1.27.1 365
26 Commons Compress (ZipFile) Java 1.27.1 365
27 java.util.zip.ZipFile Java* 21.0.5 -
28 java.util.zip.ZipInputStream Java* 21.0.5 -
29 zip4j (ZipFile) Java 2.11.5 2.2k
30 zip4j (ZipInputStream) Java 2.11.5 2.2k
31 @ronomon/zip JavaScript 1.12.0 262
32 adm-zip JavaScript 0.5.16 2.1k
33 decompress-zip JavaScript 0.3.3 102
34 jszip JavaScript 3.10.1 10k
35 node-stream-zip JavaScript 1.15.0 462
36 unzipper (Extract) JavaScript 0.12.3 458
37 unzipper (Open) JavaScript 0.12.3 458
38 yauzl JavaScript 2.10.0 766
39 yauzl JavaScript 3.2.0 766
40 zip.js JavaScript 2.7.53 3.6k
41 PharData PHP* 8.3.13 -
42 phpzip PHP 4.0.2 495
43 paszlib Pascal* 3.2.2 -
44 Archive::Zip Perl 1.68 16
45 zipfile Python* 3.13.0 -
46 file/unzip Racket* 8.15 -
47 rubyzip (File) Ruby 2.3.2 1.4k
48 rubyzip (InputStream) Ruby 2.3.2 1.4k
49 zip Rust 2.2.0 725
50 ZIP Foundation Swift 0.9.19 2.5k

https://infozip.sourceforge.net/UnZip.html
https://github.com/ip7z/7zip
https://p7zip.sourceforge.net/
https://www.win-rar.com/
https://github.com/zertovitch/zip-ada
https://github.com/gen2brain/go-unarr
https://github.com/libarchive/libarchive
https://github.com/nih-at/libzip
https://github.com/madler/zlib
https://github.com/zlib-ng/minizip-ng
https://github.com/kuba--/zip
https://github.com/gdraheim/zziplib
https://github.com/haf/DotNetZip.Semverd
https://github.com/adamhathcock/sharpcompress
https://github.com/icsharpcode/SharpZipLib
https://learn.microsoft.com/en-us/dotnet/api/system.io.compression
https://cs.android.com/android/platform/superproject/main/+/main:system/libziparchive/
https://github.com/pocoproject/poco
https://dlang.org/library/std/zip.html
https://github.com/brendan-duncan/archive
https://www.erlang.org/doc/apps/stdlib/zip.html
https://pkg.go.dev/archive/zip
https://github.com/mrkkrp/zip
https://github.com/jgm/zip-archive
https://github.com/apache/commons-compress
https://github.com/apache/commons-compress
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/zip/ZipFile.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/zip/ZipInputStream.html
https://github.com/srikanth-lingala/zip4j
https://github.com/srikanth-lingala/zip4j
https://github.com/ronomon/zip
https://github.com/cthackers/adm-zip
https://github.com/bower/decompress-zip
https://github.com/Stuk/jszip
https://github.com/antelle/node-stream-zip
https://github.com/ZJONSSON/node-unzipper
https://github.com/ZJONSSON/node-unzipper
https://github.com/thejoshwolfe/yauzl
https://github.com/thejoshwolfe/yauzl
https://github.com/gildas-lormeau/zip.js
https://www.php.net/manual/en/class.phardata.php
https://github.com/Ne-Lexa/php-zip
https://wiki.freepascal.org/paszlib
https://github.com/redhotpenguin/perl-Archive-Zip
https://docs.python.org/3/library/zipfile.html
https://docs.racket-lang.org/file/unzip.html
https://github.com/rubyzip/rubyzip
https://github.com/rubyzip/rubyzip
https://github.com/zip-rs/zip-old
https://github.com/weichsel/ZIPFoundation


Table 4: Number of inconsistency types between ZIP parser pairs. The row and column headers correspond to the parser
numbers in Table 3. The internal cells are the numbers of inconsistency types between parser pairs.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
1 - 5 6 6 4 6 5 6 7 4 7 6 3 6 5 4 4 7 6 6 4 4 8 6 5 5 4 5 6 6 1 7 5 5 5 7 5 6 7 6 7 6 7 6 4 5 5 6 4 5
2 5 - 2 8 6 8 7 7 9 6 8 9 7 6 8 7 6 4 6 6 7 6 8 5 5 7 4 3 8 6 1 10 7 7 8 7 8 8 8 7 9 9 8 7 7 4 8 6 7 6
3 6 2 - 7 6 8 7 8 7 7 8 8 7 6 9 7 7 4 6 7 7 5 9 5 6 8 5 4 9 5 1 10 7 6 7 7 8 7 8 8 8 8 7 6 5 4 8 6 7 6
4 6 8 7 - 8 10 8 10 8 8 9 10 8 11 7 9 9 10101110 9 111010 8 8 11 9 10 3 9 9 8 8 1010 9 9 1011 9 11 9 7 11 9 10 9 9
5 4 6 6 8 - 11 8 11 7 8 9 8 8 9 5 8 6 6 9 10 7 7 13 6 9 8 6 7 8 6 2 8 9 8 7 7 9 1010 9 10 8 7 9 6 6 7 8 7 8
6 6 8 8 1011 - 8 1010 6 5 9 6 12 7 8 7 11 8 8 9 8 11 8 12 9 9 12 4 12 2 8 9 9 8 12 7 5 5 9 8 7 1010 9 12 8 10 9 8
7 5 7 7 8 8 8 - 9 7 4 6 9 7 9 6 6 8 8 6 6 9 7 10 8 9 5 4 9 7 9 1 9 8 5 6 10 8 5 5 8 10 7 10 9 5 9 8 8 8 9
8 6 7 8 101110 9 - 1110 7 9 8 10 8 8 8 10 5 9 8 7 7 7 1110 7 9 9 10 2 9 9 9 9 10 8 8 6 9 8 6 9 10 8 9 9 10 8 8
9 7 9 7 8 7 10 7 11 - 8 9 9 7 11 4 9 7 9 8 10 9 9 12 7 10 8 7 10 7 9 2 9 9 9 8 10 9 10101010 9 10 9 8 10 8 10 9 9
10 4 6 7 8 8 6 4 10 8 - 4 6 5 9 5 5 6 8 7 7 8 4 8 7 8 5 3 8 4 8 2 7 6 6 6 9 6 4 4 7 7 7 10 7 6 8 8 8 7 7
11 7 8 8 9 9 5 6 7 9 4 - 6 5 11 4 4 5 9 5 7 7 6 7 8 10 7 6 10 3 10 2 6 6 6 6 10 5 4 3 5 7 5 8 7 7 10 7 10 6 5
12 6 9 8 10 8 9 9 9 9 6 6 - 4 10 6 5 3 7 7 10 8 6 9 6 11 9 5 9 7 10 2 5 6 9 5 10 6 7 8 6 3 5 9 8 7 8 8 10 6 5
13 3 7 7 8 8 6 7 8 7 5 5 4 - 7 5 3 5 5 6 7 6 4 7 5 9 8 3 6 6 8 1 6 4 6 4 7 5 6 6 6 4 6 7 6 6 6 6 7 7 4
14 6 6 6 11 9 12 9 1011 9 1110 7 - 8 7 8 5 1011 8 9 12 2 8 11 7 5 10 7 1 12 8 8 7 4 8 111110 9 10 9 11 9 5 9 7 10 9
15 5 8 9 7 5 7 6 8 4 5 4 6 5 8 - 4 6 6 5 6 7 5 7 5 9 5 3 7 7 7 1 6 6 7 3 7 4 8 7 7 6 5 5 5 6 6 7 8 4 5
16 4 7 7 9 8 8 6 8 9 5 4 5 3 7 4 - 3 7 6 9 6 4 8 4 10 8 3 7 5 9 1 6 4 5 4 9 1 4 5 5 4 5 8 6 6 8 6 9 6 5
17 4 6 7 9 6 7 8 8 7 6 5 3 5 8 6 3 - 7 3 8 3 3 7 6 9 8 5 6 4 7 1 6 4 6 5 8 3 5 5 6 3 3 5 7 6 7 4 8 6 2
18 7 4 4 10 6 11 8 10 9 8 9 7 5 5 6 7 7 - 8 11 6 6 12 4 5 10 7 2 8 2 2 9 8 8 8 4 8 1010 9 7 8 6 8 6 2 7 3 7 7
19 6 6 6 10 9 8 6 5 8 7 5 7 6 10 5 6 3 8 - 5 4 5 5 5 10 8 4 8 5 9 2 8 7 9 6 9 6 7 5 9 4 5 6 8 6 8 6 10 7 5
20 6 6 7 1110 8 6 9 10 7 7 10 7 11 6 9 8 11 5 - 10 9 9 9 10 9 8 11 5 11 0 9 8 10 5 11 9 8 7 10111010101012 8 1010 8
21 4 7 7 10 7 9 9 8 9 8 7 8 6 8 7 6 3 6 4 10 - 7 9 6 1010 8 7 6 8 1 9 9 10 6 8 7 7 7 8 6 5 6 10 7 6 5 8 6 5
22 4 6 5 9 7 8 7 7 9 4 6 6 4 9 5 4 3 6 5 9 7 - 8 5 9 8 3 7 6 7 2 7 6 6 7 10 5 5 6 7 5 6 7 5 6 7 8 10 3 3
23 8 8 9 11131110 7 12 8 7 9 7 12 7 8 7 12 5 9 9 8 - 8 13 9 6 12 9 13 3 9 8 9 1012 7 8 7 9 7 7 1210 8 121112 8 8
24 6 5 5 10 6 8 8 7 7 7 8 6 5 2 5 4 6 4 5 9 6 5 8 - 5 9 4 3 8 4 1 9 5 6 5 5 4 9 9 7 5 7 7 6 6 2 6 5 7 5
25 5 5 6 10 9 12 9 1110 8 1011 9 8 9 10 9 5 101010 9 13 5 - 9 10 4 9 3 1 101010 8 7 1110101111101012 9 5 9 3 9 11
26 5 7 8 8 8 9 5 10 8 5 7 9 8 11 5 8 8 10 8 9 10 8 9 9 9 - 5 11 7 10 1 8 8 6 8 9 8 7 6 8 10 7 11 8 6 1110 9 7 10
27 4 4 5 8 6 9 4 7 7 3 6 5 3 7 3 3 5 7 4 8 8 3 6 4 10 5 - 7 7 8 0 8 3 4 6 10 4 7 7 7 5 5 8 4 3 7 8 9 5 5
28 5 3 4 11 7 12 9 9 10 8 10 9 6 5 7 7 6 2 8 11 7 7 12 3 4 11 7 - 9 1 0 11 8 9 7 7 8 111110 8 8 7 10 6 1 8 2 8 8
29 6 8 9 9 8 4 7 9 7 4 3 7 6 10 7 5 4 8 5 5 6 6 9 8 9 7 7 9 - 9 2 7 6 8 5 8 5 4 2 7 7 5 6 8 8 9 5 8 8 5
30 6 6 5 10 6 12 9 10 9 8 1010 8 7 7 9 7 2 9 11 8 7 13 4 3 10 8 1 9 - 2 10 9 10 8 7 1011111110 9 7 10 8 2 8 2 7 9
31 1 1 1 3 2 2 1 2 2 2 2 2 1 1 1 1 1 2 2 0 1 2 3 1 1 1 0 0 2 2 - 3 1 1 1 2 1 2 2 0 2 2 3 1 1 1 1 1 1 1
32 7 1010 9 8 8 9 9 9 7 6 5 6 12 6 6 6 9 8 9 9 7 9 9 10 8 8 11 7 10 3 - 7 8 5 9 7 7 7 7 6 6 10 8 9 11 9 11 7 6
33 5 7 7 9 9 9 8 9 9 6 6 6 4 8 6 4 4 8 7 8 9 6 8 5 10 8 3 8 6 9 1 7 - 6 6 10 4 7 7 6 6 7 9 7 7 9 8 10 7 6
34 5 7 6 8 8 9 5 9 9 6 6 9 6 8 7 5 6 8 9 1010 6 9 6 10 6 4 9 8 10 1 8 6 - 8 11 7 7 7 7 10 7 10 7 5 9 1010 7 8
35 5 8 7 8 7 8 6 9 8 6 6 5 4 7 3 4 5 8 6 5 6 7 10 5 8 8 6 7 5 8 1 5 6 8 - 7 5 8 8 7 7 6 7 9 7 7 5 8 6 5
36 7 7 7 10 7 12101010 9 1010 7 4 7 9 8 4 9 11 8 1012 5 7 9 10 7 8 7 2 9 1011 7 - 9 10101110 9 9 11 9 6 10 7 9 10
37 5 8 8 10 9 7 8 8 9 6 5 6 5 8 4 1 3 8 6 9 7 5 7 4 11 8 4 8 5 10 1 7 4 7 5 9 - 5 6 7 5 5 7 5 7 8 7 10 6 4
38 6 8 7 9 10 5 5 8 10 4 4 7 6 11 8 4 5 10 7 8 7 5 8 9 10 7 7 11 4 11 2 7 7 7 8 10 5 - 1 7 6 5 8 8 7 11 8 9 6 7
39 7 8 8 9 10 5 5 6 10 4 3 8 6 11 7 5 5 10 5 7 7 6 7 9 10 6 7 11 2 11 2 7 7 7 8 10 6 1 - 6 7 4 7 7 7 11 8 9 6 6
40 6 7 8 10 9 9 8 9 10 7 5 6 6 10 7 5 6 9 9 10 8 7 9 7 11 8 7 10 7 11 0 7 6 7 7 11 7 7 6 - 8 6 9 8 8 10 8 11 6 7
41 7 9 8 1110 8 10 8 10 7 7 3 4 9 6 4 3 7 4 11 6 5 7 5 1110 5 8 7 10 2 6 6 10 7 10 5 6 7 8 - 6 9 7 8 8 8 10 5 3
42 6 9 8 9 8 7 7 6 9 7 5 5 6 10 5 5 3 8 5 10 5 6 7 7 10 7 5 8 5 9 2 6 7 7 6 9 5 5 4 6 6 - 7 6 5 8 7 10 6 4
43 7 8 7 11 7 1010 9 1010 8 9 7 9 5 8 5 6 6 10 6 7 12 7 1011 8 7 6 7 3 10 9 10 7 9 7 8 7 9 9 7 - 9 10 7 7 9 6 5
44 6 7 6 9 9 10 9 10 9 7 7 8 6 11 5 6 7 8 8 1010 5 10 6 12 8 4 10 8 10 1 8 7 7 9 11 5 8 7 8 7 6 9 - 5 10 9 11 6 6
45 4 7 5 7 6 9 5 8 8 6 7 7 6 9 6 6 6 6 6 10 7 6 8 6 9 6 3 6 8 8 1 9 7 5 7 9 7 7 7 8 8 5 10 5 - 6 9 9 8 6
46 5 4 4 11 6 12 9 9 10 8 10 8 6 5 6 8 7 2 8 12 6 7 12 2 5 11 7 1 9 2 1 11 9 9 7 6 8 111110 8 8 7 10 6 - 8 3 8 8
47 5 8 8 9 7 8 8 9 8 8 7 8 6 9 7 6 4 7 6 8 5 8 11 6 9 10 8 8 5 8 1 9 8 10 5 10 7 8 8 8 8 7 7 9 9 8 - 10 8 4
48 6 6 6 10 8 10 8 1010 8 1010 7 7 8 9 8 3 1010 8 1012 5 3 9 9 2 8 2 1 111010 8 7 10 9 9 111010 9 11 9 3 10 - 1010
49 4 7 7 9 7 9 8 8 9 7 6 6 7 10 4 6 6 7 7 10 6 3 8 7 9 7 5 8 8 7 1 7 7 7 6 9 6 6 6 6 5 6 6 6 8 8 8 10 - 5
50 5 6 6 9 8 8 9 8 9 7 5 5 4 9 5 5 2 7 5 8 5 3 8 5 1110 5 8 5 9 1 6 6 8 5 10 4 7 6 7 3 4 5 6 6 8 4 10 5 -
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